September 8, 2021

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-
perimeter.html

dWs$S

https://docs.aws.amazon.com/whitepapers/latest/building-an-aws-perimeter/building-an-aws-perimeter.html

Customers are responsible for making their own independent assessment of the
information in this document. This document: (a) is for informational purposes only, (b)
represents current AWS product offerings and practices, which are subject to change
without notice, and (c) does not create any commitments or assurances from AWS and
its affiliates, suppliers or licensors. AWS products or services are provided “as is”
without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-
perimeter.html

[aY (o Te [UToxTo] o NPT 1

Perimeter ODJECHIVESuviiii i e e e e et e e e e e e e e e e e e e e e e e e eeennnes 2
AWS SEIVICES ...ttt ettt e e e ettt e e e e e e e e et et b e e e e e e e eeeetban e e e e e e eeeesennnnnn s 4
ODJECHIVES SUMIMAIY ...ttt e e e e e e e e et s e e e e e e e e e eerann e e e eeeas 4

PEIMETET OVEIVIEWttt ettt e e e e e e e e et ee b e e e e e e e eeeeeaenan e e eeeeeeeeennes 5
[dentity BOUNGAIYooeeiiiiiie et e e e e e e e e e e e e e e e e ee et e e e e e e e eeennnes 5
RESOUICE BOUNAIYuuiiiiiciiiiiiei et e e e e e e e e e e e e e s aaateeeann s 9
NEIWOIK BOUNUAIYeviiiie ettt e e e e e e e et e e e e e e e e e e sanatn s 12
Preventing Access to Temporary CredentialSuuuueuiiiimiimimiiiiiiiies frneeeenenneianes 16

(@'0] o Tod 0110 o 1 U 17

Appendix 1 — IAM Guardrail Policy EXamplesccccoitiiiiii vl 18

Appendix 2 — Network Boundary SCP........ccco it sse s iee s seaibannaeeeeeeaeeennnns 21

Appendix 3 — Resource PoliCy EXamPIe........ccoiiiiii it 23

Appendix 4 — VPC Endpoint Policy EXamples.......c.....ciiiiiiiiiiiicee e 25
Preventing Unintended PHANCIPAIS i e 25
Preventing Unintended RESOUICE ACCESS.........uuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiinnieeeenneeeenneeaeaaee 26

Appendix 5 — IAM Role EEU&XWE?%HQSbeenar Chwed 30

Appendix 6 - Example Proxy Configuration.................cceiiiiiiiiiiiiiiiiiie e 32

COﬂthbUtOfS.......FO.r. the.latest.version.oft .t\h.i.s.d.o.cu.ment'..visit: 35

DOCUMENT REVISIONS ...coeiiiiiiiiiiieeieeeeeee ettt ettt ettt e e e e e e e e e e e eeees 35

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-
perimeter.html

Many organizations want to create in AWS the same kind of perimeter protections they
use in on-premises environments. This paper outlines the best practices and available
services for creating a perimeter around your identities, resources, and networks in

AWS.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-
perimeter.html

Amazon Web Services Building an AWS Perimeter

In traditional, on-premises data center environments, a trusted network and strong
authentication are the foundation of security. They establish a high-level perimeter to
help prevent untrusted entities from coming in and data from going out. This perimeter
provides a clear boundary of trust and ownership. When customers think about creating
an AWS perimeter as part of their responsibility for security “in the cloud” in the AWS
Shared Responsibility Model, they want to achieve the same outcomes. They want to
draw a circle around their AWS resources, like Amazon Simple Storage Service (S3)
buckets and Amazon Simple Queue Service (SQS) queues, that clearly separates “my
AWS” from other customers.

The circle that defines an AWS perimeter is typically represented as an AWS
organization managed by AWS Organizations. AWS Organizations is an account
management service that lets you consolidate multiple AWS accounts into an
organization that you create and centrally manage.

Each AWS account you own is a logical container for AWS identities, resources, and
networks. The AWS organization is a grouping of all of thase items into-a single entity.
Along with on-premises networks and systems that access AWS resources, it is what
most customers think of as the perimeter of “my AWS”.

The perimeter defines the things you “intend” or “expect” to happen. It refers to the
access patterns among your identities, resources, and networks that should be allowed.
Using those three elements, we want to make the following assertion to define our

perimeter’s goal: accesSTOV et Sioay Ble-éhe HeeHiWegtended, the

resource is intended, and the network is expected.

If any of these conditions are false, then the access inside the perimeter is “unintended”

and should be depigf-the batiastev srgitpeeddthipdueianemengsitd by your

identities, resources, and networks to ensure the necessary conditions are true.

This paper discusses these boundaries in terms of preventing unintended access

patierns. It is RgFj98e0 G EPANS A RFAZ BB WP LR R THesEpte 2
complete AWS pejigigies Rt AWOSH FARRIRY /g S harsd

Responsibility Model. perimeter.html

dWs

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Web Services Building an AWS Perimeter

My AWS

AWS Account

O & &~

Corporate Data S3 Buckets 1AM Principals

Not My AWS

-
Unintended
Resource

S3 Buckets

ey
E- Unintended

Resource
S3 Buckets

EC2 Instances

Corporate data center /

8 Corporate Data
<9 Unintended
o

B&‘B — External IAM Principal
Credentials

IAM Principals

8&‘5 Unintended
AWS Account Principal

IAM Principals

0 28 &

Corporate Data 1AM Principals S3 Buckets

EC2 Instances

Figure 1 - AWS perimeter: A high-level depiction of defining a perimeter around your AWS
resources to prevent interaction with unintended AWS ldentity and Access Management (IAM)
principals and unintended resources.

Taisiversion has been archived.

The goal of an AWS perimeter is to ensure access is allowed if and only if an

authorization involves: . . .
For the latest version of this document, visit:
1. Only My IAM Principals - The AWS Identity and Access Management (IAM)

principals in my AWS organization or AWS acting on my behalf

2. Only IGKRRS PSS WS RRALSH. BOT AT LB St a8y s
AWS opegiEi &l n@yabﬁbaaws-perimeter/ building-an-aws-
3. Only My Networks - Both rr]géﬁ'meudmhmaetnises networks

These are the necessary and sufficient conditions for intended access inside an AWS
perimeter to be allowed.

dWs

https://aws.amazon.com/iam/?nc=sn&loc=0
https://aws.amazon.com/iam/?nc=sn&loc=0

Amazon Web Services Building an AWS Perimeter

Access in the Perimeter
< (Only My IAM Principals) A (Only My Resource) A (Only My Network)

Ensuring the truth of these three conditions ultimately defines the objectives of the
perimeter. It also represents three separate boundaries through which we can
implement controls.

There is an ldentity Boundary that specifies resource and network controls, a
Resource Boundary that specifies identity and network controls, and a Network
Boundary that specifies identity and resource controls.

Thus, each boundary supports two of the three overall objectives to prevent unintended
access patterns. The following table outlines how each perimeter objective is supported
in each boundary.

Boundary Perimeter Objective Purpose
Only My Resources My IAM principals can only access resources
that-are part of “my AWS”
Identity
My IAM principals can only access resources
Only My Netwoggs from expected networks
Only My IAM Principals Only IAM principals that are part of “my AWS”
can access my resources
Resource
e . NTt\rkllskvergomha@tbeemramiﬁvedessed from
niy My Networ expected networks
OnpIPYAY THEESE e8I UP tHiRa Set At 8rtO ?%Xt’*ws
can access resources from my nétworks
Network
onlv My R Only resources that are part of “my AWS” can be
nly My Resources
accessed fro etwo
https.//docs aws.amazon.com/witit epapers/ latest/
. lﬂ ng-an-aws- erlmete building-an-aws-
The next section wi outlln the AWS r\|4|10ee e to |mple ent the perimeter.
aws

Amazon Web Services Building an AWS Perimeter

AWS Services

There are several services that will be used to create the controls in each boundary to
meet each of the perimeter objectives. We will analyze these services based on how
they support each boundary.

e Identity Boundary — The Identity Boundary is built from two types of policies,
IAM identity-based policies and AWS Organizations Service Control Policies
(SCP). Identity-based policies are applied directly to IAM principals to define their
permissions. SCPs are a type of organization policy that you can use to manage
permissions in your organization and are applied to your identities. SCPs offer
central control over the maximum available permissions for all accounts in your
organization. This control includes the ability to define the expected network
locations for interaction with intended AWS resources.

e Resource Boundary — The Resource Boundary is defined through resource-
based policies. These policies are applied to AWS resources and define which
IAM principals can interact with the resource, as well as what the expected
networks are for access.

e Network Boundary — The Network Boundary is defined through the use of VPC
endpoints and VPC endpoint policies and must include both VPC and on-
premises networks. A VPC endpoint enables a private VPC connection to
supported AWS services without requiring an internet gateway, NAT device, VPN
connection, or AWS Direct Connect connection. Most endpoints also support
applying an endpoint policy. This is an additional IAM policy that is evaluated
against all requesphiRIFEISSTON HS ' B éer/ M- eHivergor resource involved
in the request is part of “my AWS”. It is important because these policies are
evaluated against all IAM principals, where identity-based policies and SCPs only

apply to IAM principals that are part of your organization. L
For the latest version of this document, visit:

Objectives Summary

In summary, the objectives of the perimeter are to ensure that access involves Only My
IAM Principaltttoat Adogs sHyaamaze B9 my/ Whikepep ersiintestdiary
achieves the stai@ublging=ancamsperimetes/build ir@-amraWSs-then the
perimeter prevents unintended princnﬂrsimﬁei‘ebd'sahg your resources, prevents your
principals from accessing unintended resources, and finally, prevents data from being
moved outside the perimeter to another AWS resource. This table summarizes the
boundary and objectives mapping to the AWS services used to implement them.

dWs

Amazon Web Services Building an AWS Perimeter

Boundary Perimeter Objective AWS Services Used

Only My Resources
Identity Identity-based policies and SCPs
Only My Networks

Only My IAM Principals
Resource Resource-based policies
Only My Networks

Only My IAM Principals
Network VPC Endpoint Policies
Only My Resources

This section describes the complete perimeter solution by evaluating how each
boundary is implemented using the previously mentioned AWS services. Each
boundary section will describe the overall solution and how it achieves each associated
perimeter objective. They will also provide an appendix reference with detailed
examples and demonstrate how the boundary prevents the unintended access pattern
for each objective.

Identity Bounda{y e sion has been archived.

The ldentity Boundary consists of policies applied to the IAM principals that are part of
“‘my AWS” and ensures that they only access intended resources (Only My Resources)

from expected nqsuk HEMY ML NGRS of this document, visit:

Only My Resources
This objective ensurei hat your intended |IAM principals.can’t accesz resources in AWS
R

accounts outdHFRR/A/ARER WS- 20PAZAB- SR/ WRI LR aRELS/ ke oives
cross-account acRMUdings AWSREENDELES PHLIRGza0:3Wsnt is not part of
your AWS organization). For requesREFUMELSFEBLWS account to another, the
requester in Account A (an account in “my AWS”) must have an identity-based policy
that allows them to make a request to the resource in Account B (an account outside of

dWs

Amazon Web Services Building an AWS Perimeter

your perimeter). Also, the resource-based policy in Account B must allow the requester
in Account A to access the resource.

If policies in both accounts don't allow the operation, the request fails. Thus, by
implementing least privilege identity-based policies, focused on reducing standalone
wildcards in Resource statements ("Resource": "*'") and explicitly listing allowed
resources when possible, customers can significantly reduce, if not eliminate, the risk of
accessing unintended resources.

In addition to least privilege identity-based policies, SCPs are designed to provide hard
guardrails on what resources your IAM principals can access as a defense in depth
approach to limiting resource access.

SCPs configured as deny lists can limit the scope of access to resources in specific
accounts that are part of your organization by specifying resources like
"arn:aws:ec2:*:123456789012:*" for actions that support specifying resource
types and using the s3:ResourceAccount condition for Amazon S3 resources.

The following diagram demonstrates how this control prevents your.identities from
accessing unintended resources.

Identity Policy or SCP

7/ MyAWS
Expected » ,i?tor:;c;;vs My AWS Account

Network PR > e VPC Endpoint

Intended S3
Bucket

Intended
Principal

Employee

\
Not My AWS Account ¥

VPC

Unintended S3
Bucket

building-an-aws-perimeter/building-an-aws-
Figure 2 - Preventing Access to Uninmﬁmetep.lhtml Identity-based policies and SCPs
can restrict access to only intended resources.

In order to build SCPs like this, you will need to review which services support resource-
based policies (like Amazon S3) and/or resource sharing (like EC2 Amazon Machine

dWs

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_denylist
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Web Services Building an AWS Perimeter

Images), review the |AM documentation to identify the actions that support resource
types (vs those that require a wildcard as the resource), and create policies limiting
those actions to resources in your accounts.

You will need to keep these policies up to date as new services, actions, and resources
are added. You may also need to limit these policies to select services and/or accounts
if you have a large number of AWS accounts in your environment in order to stay within
the size and quantity quotas provided by AWS Organizations for SCPs.

In some cases, you may need to interact with resources that are owned by AWS and
are not a part of your AWS organization, typically an Amazon S3 bucket, AWS Systems
Manager Parameter Store parameters, or an Amazon SNS topic. These resources will
need to be explicitly allowed in the policies you create. See Appendix 1 — IAM Guardrail
Policy Example, which provides details of how to create both an identity-based policy
and SCP that restricts access to resources in specific AWS accounts.

Only My Networks

Customers can support this objective with an SCP, which applies to all of their intended
principals and specifies the expected locations for data access. This forces AWS
access through your established Network Boundary controls. See Appendix 2 —
Network Boundary SCP for an example SCP that implements network controls. The
following diagram shows how this control prevents access from unexpected network
locations.

Expected My AWS Account
Network :
VPC VPC Endpoint
G &
N

DX Intended S3

/ Bucket

Unexpected

Network
Identity Policy or SCP

c(@ v My Expected
—H@a Networks
L N X Notmy

Employee Intended Networks
Principal

Access over internet

dWs

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

Amazon Web Services Building an AWS Perimeter

Figure 3 - Preventing Intended Principals from operating in Unexpected Networks: An
AWS Organizations SCP or identity-based policy can be used to prevent intended principals
from accessing resources from unexpected networks.

There are several scenarios where AWS will act on your behalf with your IAM
credentials from networks that AWS owns that will require exceptions to this control.

For example, AWS CloudFormation provides the ability for customers to define a
template of resources that AWS orchestrates the creation, update, and deletion of those
resources. The initial request to create a CloudFormation stack will originate from an
expected network, but the subsequent requests for each resource in the template are
made by the CloudFormation service in an AWS network.

The aws:ViaAWSService IAM policy condition provides a way to implement an
exception for some of these common scenarios where your IAM credentials-are used in
the requests. Appendix 2 — Network Boundary SCP includes details on how to write
such exceptions.

The last consideration in implementing network controls is AWS services that operate in
compute environments that are not part of your network. For example, Lambda
functions or SageMaker Notebooks both provide an eption to run on AWS-owned
networks.

Some of these services provide a configuration option for running the service in your
VPC as well. If you want to use the same VPC network boundary for these services,
you should monitor and - where possible, enforce it - using the VPC configuration.

For example, customersThisVersidfihas bedw grchppegnents and updates

to use Amazon Virtual Private Cloud (Amazon VPC) settings with IAM condition keys,
use AWS Config Rules to audit this configuration, and then implement remediation with

AWS Config Remediation Actions and AWS Systems Manager Automation documents.
FOr the latest version oT this document, VISIT:

It is iImportant to note that not all AWS services are hosted as an AWS-owned endpoint
authorized with IAM (for example, Amazon Relational Database Service databases).

Instead, these services expose their data plane inside a customer VPC.
https://docs.aws.amazon.com/whitepapers/latest/

The data plane isgjf U&ﬁﬁﬁ@tﬁﬁ-’%ﬁ%cﬁéﬁm[ﬁ‘é??bﬁﬂd'mdoaq%wiO”a"ty of that
thing. For MySQL RDS, it would be ﬁ@ﬂfﬂ?@f’é?’sﬁﬂﬁhe RDS instance on port 3306.

Network controls like firewalls or security groups should be used as part of your
Network Boundary to prevent access to AWS services that are hosted in customer
VPCs, but are not authorized with IAM credentials. Additionally, customers should

dWs

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-conditions
https://docs.aws.amazon.com/config/latest/developerguide/lambda-inside-vpc.html
https://docs.aws.amazon.com/config/latest/developerguide/remediation.html

Amazon Web Services Building an AWS Perimeter

leverage alternative identity authentication and authorization systems to access those
services, like AWS Secrets Manager for RDS access, when possible.

Mobile Devices

In on-premises networks, there are some resources that are physically static, such as
servers. Other resources like laptops, however, are inherently mobile and can connect
to networks outside of your control.

For example, a laptop could be connected to a corporate network when accessing data,
which is temporarily stored locally, but then joins a public Wi-Fi network and sends the
data to a personal Amazon S3 bucket. This access pattern allows access to unintended
resources and is a use case that customers will need to consider with care.

Customers have generally tried to solve this problem with preventative controls such as
always-on VPNs to keep devices connected to a corporate network. They also use
detective controls (including agents) to monitor traffic and identify when preventative
controls are disabled.

However, these controls aren’t fool-proof. There is still some risk that the device could
join non-corporate networks. Virtual Desktop Infrastructure (VDI) is typically
implemented when the risk of being able to operate a device outside of a controlled
network is unacceptable and the solution requires forcing access to AWS resources
from non-mobile assets.

Amazon WorkSpaces offers a virtual desktop infrastructure (VDI) solution that can be
used to require users, developers, and data scientists to use a static asset to interact
with AWS resources thaffih $6 NRSFEIG15 1aE DR 'aPeHilasgcontrols as other
resources in AWS VPCs. VDI solutions can also be operated by customers natively
using Amazon Elastic Compute Cloud (EC2) instances in a VPC.

Resource Q@Jhggﬂgst version of this document, visit:

The Resource Boundary consists of resource-based policies applied to the AWS
resources that are part of “my AWS” and ensures that they are only accessed by

intended idend&psobidngsAawsHnazomsenawhitepansns/ latgsts
Networks). building-an-aws-perimeter/building-an-aws-

perimeter.html
Some resources in AWS support resource-based policies (like Amazon S3 Bucket

Policies), meaning that in addition to authorization through identity-based policies, these
resources can define an access policy that is directly associated with the resource.
These are commonly used to provide cross-account access, and can be used to

dWs

https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/workspaces

Amazon Web Services Building an AWS Perimeter

authorize external AWS credentials or anonymous access. Although resource-based
policies do not allow unintended access by default, a misconfigured policy might
unintentionally grant access to an unintended principal or unexpected network.

To ensure that only intended principals can access your resources from expected
locations, you can implement standardized resource-based policies as a compensating
control against misconfiguration. You might deploy these resources from standardized
templates in AWS Service Catalog that already include the policy, or you might add the
policy to the resource in an event-driven way through Amazon EventBridge when
resources are created or their resource-based polices are updated.

Only My IAM Principals

The standardized control policy should limit access to intended IAM principals by
specifying the aws: PrincipalOrgId IAM policy condition in the resource policy. You
can implement a more granular restriction with the aws : PrincipalAccount or
aws:PrincipalOrgPaths IAM policy conditions as well. To ensure that your resource
policies only allow the intended access, customers can use 1AM Access Analyzer for
supported resources to identify resource-based policies that are too permissive.

In certain cases, AWS services may use an |AM principal that is outside of your
organization, specifically a service principal, to perform actions on your behalf. For
example, AWS CloudTrail uses the 1AM service principal cloudtrail .amazonaws.com
to deliver logs to your Amazon S3 bucket. These are intended actions, but need to be
explicitly allowed in your.resource-based policies. You can do this with the
aws:PrincipalIsAWSService condition.

See Appendix 3 — Resom];(tielé(yigy x%%phea%r%%grrqplg!éccl)?la‘{ sﬁgﬁdard policy

statement you can add to all resource-based policies to achieve the Only My IAM
Principals objective as well as create necessary exceptions in the Resource Boundary

controls: For the latest version of this document, visit:

The following diagram demonstrates how this control prevents unintended principals
from accessing your resources.
https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-
perimeter.html

aws
10

https://aws.amazon.com/servicecatalog/
https://aws.amazon.com/eventbridge/
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Web Services Building an AWS Perimeter

Bucket Policy

Expected Gl My AWS Account v e

rincipais
Network . Not my AWS

VPC Vpe Endpomt " Principals

N\
A
Intended Intended S3
Employee Principal Bucket

DX

7
{ Not My AWS Account
— > :
() e, VPC

Unintended
Principal Unintended S3
Bucket

Employee

Figure 4 - Preventing Unintended Principals: The Amazon S3 bucket policy (a resource-
based policy) only allows intended principals.

Only My Networks

The resource-based policy might also optionally specify what network locations are
expected sources for access by using the aws: SourceIp and aws: SourceVpc (or
aws : SourceVpce) conditions. This control adds defense in depth because the Identity
Boundary and Only My IAM Principals objective in this boundary provide the same
outcome. Only your IAM principals are allowed to access this resource (as defined in
the resource-based poligy) and the or%]aniﬁltion SCP define&the a(pected networks

your principals are allow: a‘ége!‘é' Q &)%rpeeﬁd%a{ﬁ !evc% trols have indirectly

also achieved the Only My Networks objective in the Resource Boundary.

The following diagram shows how this control prevgnts agcess from ynexpected
networks 9 CeE ST the' fatest version ‘ot this (ﬁocumenuc, VIsit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-
perimeter.html

dWs

11

Amazon Web Services Building an AWS Perimeter

Access over internet T
v My Expected
Unexpected QUEY My AWS Account Networks

Network / = i
VPC VPC Endpoint

Networks

Intended S3

Employee Intended
Principal Bucket
Expected Not My AWS Account
Network
& e VPC
—eS
Intended Unintended S3
Employee Bk ———
Principal

Figure 5 - Preventing Access from Unexpected Networks: The S3 bucket policy (a resource-
based policy) prevents access from unexpected network locations.

Network Boundary

The Network Boundary consists of VPC.endpoint policies applied to VPC endpoints in
expected networks (your VPCs) that ensure only intended identities (Only My 1AM
Principals) can access intended resources (Only My Resources) from your expected
networks.

This boundary’s purposel-ihi% Wtﬁfmﬁ%t?dﬁWW?d resources

outside the perimeter by unintended 1AM principals whom are not subject to your IAM
identity-based policies or SCPs.

VPC endpoint pojrs eI tR B YEFSTBICHf YRTS YBAYERT) Yigpe: principals

in both your VPC and on-premises networks. In VPC networks, traffic Is routed to VPC
endpoints automatically if you are using AWS provided DNS.

For on-premie byt O G RSN Wiied ARy AiG e s
they are °°nne%ﬂé\mgc.vs%%spﬁssi&%%%%%Nﬁmg%ﬁ%s? fat have

PrivateLink interface endpdints, you carﬁ%uet% etra i nt_|olthose ndpoints directly from an
on-premises network. When using aﬁimazon I5'ynamoDB that only provides a gateway
endpoint, you can use a proxy fleet as a way to route traffic from on-premises over that
endpoint. This control ensures that unintended principals can’t move data outside your
network perimeter to other AWS locations.

dWs

12

https://d0.awsstatic.com/aws-answers/Accessing_VPC_Endpoints_from_Remote_Networks.pdf

Amazon Web Services Building an AWS Perimeter

Only My IAM Principals

VPC endpoint policies can prevent the use of unintended identities by specifying the
aws:PrincipalOrgId IAM policy condition in your Network Boundary. You can also
implement more granular controls with the aws: PrincipalAccount or
aws:PrincipalOrgPaths conditions. This condition prevents the use of any identity
that is not part of your organization. See Appendix 4 — VPC Endpoint Policy Examples
for best practices on implementing VPC endpoint policies. The following diagram shows
how this control prevents access by unintended principals from expected networks.

Endpoint Policy

v’ My AWS
EXDEC’CE‘S My AWS Account i ZZ‘t‘Cm”)yaEWS
etwor " Principals
VPC VPC Endpoint
—_—
A
Intended Intend:d S3
Employee Principal/ Bucket
Not My AWS Account
—>O"—"::O
& =~ VPC
Emol Unintended
BpRyes Principal Unintended S3
Bucket

Figure 6 - Preventing Unintended Principals from Inside an Expected Network: Unintended
principals are blocked at tHEN R ¢eSi YR a9 B 68 igprERivesdt in the endpoint policy
requiring that the credentials belong to the AWS account hosting the resource or to the AWS
Organization owned by the customer.

Only My ResdiREdbe latest version of this document, visit:

An endpoint policy can also be used to prevent access to unintended resources in a
similar way that identity-based policies or SCPs do. This control also provides a defense
in depth appréttipbgtAdecsiaws:amazomnrobin/ whitdpap ers/iteteskhtities to
operate in your elpgilidinptandewsoperimieténfbaldmig-thaidansty Boundary
that implements Only My ResourcesPéanmu@hmtplishes the same outcome of
Only My Resources in the Network Boundary. The following diagram shows how this
control prevents your identities from accessing unintended resources.

aws
13

Amazon Web Services Building an AWS Perimeter

Endpoint Policy

v MyAWS
aws Resources
Expected My AWS Account 5¢ Not my AWS

Network - VPC Endpoint Resources

Intended S3
Bucket

Employee

Principal

Not My AWS Account

VPC

Unintended S3
Bucket

Figure 7 - Preventing Access to Unintended Resources from an Expected Network:
Unintended resources are blocked at the VPC endpoint through using a resource statement or
condition in the endpoint policy requiring that the resources belong to the AWS account of the
network or belong to the AWS Organization owned by the customer.

Amazon S3 Resource Considerations

Amazon S3 is widely used to store and present publicly available website content and
public data sets. Access to this content is typically performed anonymously, meaning
that the HTTP requests'do not have an authorization header or query string parameter

generated from AWS crefilafarsion has been archived.
Customers may need this anonymous access for users to browse internet websites

from VPC networks or on-premises networks that are routed through VPC endpoints. It

's also used for WosOPAR Ut BEY VRISIOAFEPTAIS A GeRMEREVigrade

repasitories hosted on Amazon S3 or agent downloads). In order to allow this type of
access, customers may choose to allow anonymous GetObject API calls in their VPC

endpoint policies. This is true whether the Amazon S3 content is being accessed using
the virtual or fettpsy)t/ dotsiatesiamzzonzcomywhitepapersyidte '
endpoint. building-an-aws-perimeter/building-an-aws-

Access to all other Amazon S3 APIsps '(‘)'lﬂ?jeotee'z‘i'lhﬁgr']hcated. The Appendix 4 — VPC
Endpoint Policy Examples also includes details of how to allow anonymous GetObject

API calls while enforcing authentication and guardrails for intended resources for the
remainder of Amazon S3 actions.

dWs

14

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html

Amazon Web Services Building an AWS Perimeter

Cross-Region Requests

VPC endpoints only support routing AWS API calls to service endpoints that are in the
same Region as the VPC endpoint itself. For example, an Amazon S3 VPC endpoint in
a VPC in us-east-1 only supports routing traffic for requests made to S3 buckets in us-
east-1. A call to PutObject for a bucket in us-west-2 would not traverse the VPC
endpoint and would not have the endpoint policy applied to the request. To ensure the
intended security controls are applied, customers can handle cross-Region requests in
two ways using a proxy.

Prevent cross-Region API calls. This does not require inspecting TLS and can be
done by looking at the hostname in the CONNECT request or, if using Server
Name Indication (SNI), the hostname presented in the ClientHello, Since the
AWS Region is included in the domain name of the URL (with the exception of
some services that only provide a single control plane endpoint such@as |AM.or

Route53).

Forward out of Region requests through the proxy. There are two options
available for this solution.

o

The local proxy can forward traffic to a peer proxy running ina VPC in the
requested Region. The out-of-Region proxy sends the traffic to the
appropriate VPC endpoint.inits Region. See Appendix 6 - Example Proxy
Configuration for an example proxy configuration that implements this proxy-
chaining solution.

The local proxy uses AWS-provided VPC DNS. An Outbound Amazon
Route 53 Reﬁjlviesr Sél'esqmqthggobté)éﬁegw names to an
Inbound Route 53 Resolver endpoint in a VPC in the requested Region. This
resolver endpoint is co-located in the same VPC, with the necessary VPC
endpoints. The resolver returns the IP address of the appropriate VPC
endpdianthedatesbrersioms afethiscdoetignent Wisitsndpoint in

the requested Region.

The following diagram demonstrates a high-level reference architecture for managing
out of Regionkigepssyy ddtslawscaminzon.com/whitepapers/latest/

dWs

building-an-aws-perimeter/building-an-aws-
perimeter.html

15

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_examples_general.html#example-scp-deny-region
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_examples_general.html#example-scp-deny-region

Amazon Web Services Building an AWS Perimeter

ﬂ"f«, Corporate AWS Account
VPC VPC
@y —®
E VPC Endpoint Proxy Fleet ProxyFIeet VPC Endpoint

s3.us-west- 2 amazonaws. com\\ s3.us-east-1.amazonaws.cofn

'\
e

Workload Instances

Figure 8 - Using Proxy-Chaining to Send Out-Of-Region Requests through VPC
Endpoints: Workloads send their HTTPS traffic to a proxy in the same Region. That proxy
sends ‘“in-Region” requests to the appropriate VPC endpoint and forwards “out-of-Region”
requests to a peer proxy.

Preventing Access to Temporary Credentials

Except for the cases of cldtisvension hasdreen anchivedhy for an unintended
entity to gain access to temporary credentials derived from IAM roles that are part of
“‘my AWS?”, is through misconfigured IAM role trust policies.

IAM role trust polc@E thedatestnersiangbthisdosyment, xisitie. A role
trust policy is a required resource-based policy that is attached to a role in IAM. The
principals that you can specify in the trust policy include users, roles, accounts, and

services.
https://docs.aws.amazon.com/whitepapers/latest/

The trust policy chubkdingianed weperitietexy buifdin guasidaths-customer’s
account or organization can be authpi@dgrietssiitmibe role. Customers should audit
all IAM role trust policies and ensure one of the following are true.

aws
16

Amazon Web Services Building an AWS Perimeter

The trust policy uses either the aws : PrincipalOrgId or
aws:PrincipaOrgPaths condition in an allow statement when the trusted entity
is an 1AM principal, such as a role or user. Exceptions can be created with an

allow list of known, external, expected accounts and they should use the
sts:ExternalId condition.

The trust policy implements a deny statement for all IAM principals when the
aws:PrincipalOrgId condition does not match the intended org.

The trusted entity is an AWS service, being either a service principal or IAM
service-linked role. A trust policy should not trust more than one AWS service for
least privilege reasons.

See Appendix 5 — IAM Role Trust Policy Example for more details.

This paper has reviewed how VPC endpoints with policies, resource and identity-based
policies, and SCPs are effective tools for creating boundaries as part of a perimeter
around “my AWS”.

The following is a list of the recommendations made throughout this paper as part of
achieving the perimeter’s three objectives.

dWs

Use least privilege IAM identity-based policies and SCPs to prevent intended
principals from accessing unintended resources.

Use an SCP to Iinp}ﬁrscqpéggirefp“% B@éﬁXWPﬁVWPrk locations.

Add defense in depth to resources that support resource-based policies by
specifying the aws: PrincipalOrgId condition to limit access to intended

principals gk OFf e Pt ESRAVORS B B F A S I EXTrEHIt, Rpigit: locations.

Audit all resource policies to ensure that these coarse-grained controls are

applied to prevent misconfiguration. Use IAM Access Analyzer to review
resource-based policy configuration. Use the aws :Principal IsAWSService

conditibrittp s does.awsiamazenvco myfwdd fepapersytatest /
Use VPC é%'db'&!h&gaﬁd’eﬁéﬁs%ﬁ%rdﬁaﬁ%/&é!}éﬂf nﬂn?é?]o%‘ﬁlﬁnnupals when

interacting with AWS resourc?serrm%r 5rks by using
aws:PrincipalOrgId as a condition in each statement. Also, use VPC endpoint

policies to prevent access to unintended resources to provide defense in depth.

17

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

Amazon Web Services Building an AWS Perimeter

e Block all outbound Internet access, except for required AWS endpoints and
allowed external services that are dependencies for your workloads. This
prevents data movement to non-AWS destinations, out-of-Region AWS
endpoints, and unintended VPC hosted data plane services (like RDS instances).

e Use the s3:ResourceAccount condition to limit access to buckets in specific
AWS accounts.

e Where required, implement proxy-based solutions to manage out-of-Region
requests so that Network Boundary controls are consistently applied.

e Where AWS provides an option to run a resource publicly or inside a customer-
owned VPC, use the VPC configuration (that is, Amazon Elasticsearch Service
(Amazon ES), Amazon SageMaker notebooks, and AWS Lambda) and turn off
the public access options (for example, Amazon Redshift and RDS) in order to
use network controls.

e Configure IAM Role Trust Policies with condition statements, limiting access to
only intended principals when the trusted entity is an IAM principal (as opposed
to an AWS service principal).

The following provides an example of an 1AM identity-based policy that provides access
to Amazon Simple Queue Service (SQS) resources belonging to a specific set of
accounts (could be one ‘or more).

"Version": "2012-10-17",
"Statement": [
{
"Sid": "SQSLimitCrossAccountAccess",
"Action": [

"sgs:AddPermission",
"sgs:ChangeMessageVisibility",
"sgs:ChangeMessageVisibilityBatch",
"sgs:CreateQueue",
"sgs:DeleteMessage",
"sgs:DeleteMessageBatch",
"sgs:DeleteQueue",
"sgs:GetQueueAttributes",
"sgs:GetQueueUrl",

aws
18

http://aws.amazon.com/elasticsearch-service
http://aws.amazon.com/elasticsearch-service
https://aws.amazon.com/sagemaker/
http://aws.amazon.com/lambda
http://aws.amazon.com/redshift
https://aws.amazon.com/sqs/

Amazon Web Services Building an AWS Perimeter

"sgs:ListDeadLetterSourceQueues",
"sgs:ListQueueTags",
"sgs:PurgeQueue",
"sgs:ReceiveMessage",
"sgs:RemovePermissions",
"sgs:SendMessage",
"sgs:SendMessageBatch",
"sgs:SetQueueAttributes",
"sgs:TagQueue",
"sgs:UntagQueue"

1y

"Effect": "Allow",

"Resource": |
"arn:aws:sgs:*:123456789012:*",
"arn:aws:sgs:*:987654321098:*"

]

}s
{
"Sid": "SQSAllowActionsWithoutAResource",
"Action": [
"sgs:ListQueues"

I

"Effect": "Allow",

"Resource": [

"Wk

You can use this same pattern for constraining access to just your resources for other
services that support resource-based policies ang {_i:_a),ssb-account access, sych as

Amazon Simple N&Fiédﬂ@n@&ﬁlﬁ}‘eé’ %ﬁ!’:@r}l\@/ Q EHHH%E Ehﬁétl: Service

(Amazon SES). To use this policy as a guardrail SCP, you need to use an allow list
strategy and replace the default Full1AwWSAccess SCP. Ensure you test the policy for

vour use cas AL 6l SIS ST, BRCHIRTEe Bl ur N e

The next identity-Datidd ingcanrawscpard eterdbuitding ran @wWsrecified
accounts. perimeter.html

"Version": "2012-10-17",
"Statement": |

aws
19

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://aws.amazon.com/sns/
http://aws.amazon.com/lambda
http://aws.amazon.com/ses
http://aws.amazon.com/ses
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_allowlist
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_allowlist

Amazon Web Services Building an AWS Perimeter

"Sid": "AllowS3InteractionWithSpecificAccounts",
"Action": "s3:*",

"Effect": "Allow",

"Resource": [

L1}

1y
"Condition": {
"StringEquals": {
"s3:ResourcelAccount": [
"123456789012",
"987654321098"

Because the preceding policies use a condition for Amazon S3 actions, it can’t be used
as an SCP. To use it as an SCP, the policy can be rewritten as a deny list. For this
example, we assume the default FullAWSAccess policy is'in place. Ensure you test the
policy for your use cases and other exceptions that may be required for your
environment.

"Version": "2012-10-17",
"Statement": [

{

"Sid": "LimitS3InteractionWithSpecificAccounts",
"Action": [
Vg3 g HT
]I
"Effect": "Deny",
"Resource": "*",
"Condition": {

"StringNotEquals": {
"s3:ResourcelAccount" : [
"123456789012",
"987654321098"

aws
20

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_allowlist
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_allowlist
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_denylist
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_inheritance_auth.html

Amazon Web Services Building an AWS Perimeter

This same policy can be incorporated into a VPC endpoint policy as shown in Appendix
4 — VVPC Endpoint Policy Examples, but may need to allow anonymous s3:GetObject

in certain circumstances which are discussed in the appendix.

This policy can be applied once at the organization root level, in which case, you’ll need
to scale the aws: SourceVpc condition to include VPCs from all of your accounts. You

can also apply this policy in a more granular way at an organizational unit or individual
account level (meaning you would have multiple SCPs of this type deployed). Be sure to
check that your SCPs conform to the quotas provided by AWS Organizations.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Deny",
"NotAction": [
"es:ESHttp*",
"dax:PutItem",
"dax:Query",
"dax:Scan",
"dax:GetItem",
"dax:Deleteltem",
"dax:BatchGetItem",
"dax:BatchWriteItem",
"dax:ConditionCheckItem"
]I
"Resource": "*",
"Condition": {
"NotIpAddressIfExists": {
"aws:Sourcelp": [
"192.0.2.0/24",
"203.0.113.0/24"
]

br
"StringNotEqualsIfExists": {

dWs

21

Amazon Web Services Building an AWS Perimeter

"aws:SourceVpc": [
"vpc-012abc01",
"vpc-023edf34"

]

I

"Bool": {

"aws:ViaAWSService": "false"
}I
"Null™: {

"aws:PrincipalTag/IpRestrictedExempt": true

i
"ArnNotLike": {

"aws:PrincipalArn": "arn:aws:iam::*:role/aws:ec2-
infrastructure"

This is a summary of the SCP contents. The policy denies all actions toall resources,
except for the actions listed in the NotAction section. They are listed because Amazon

DynamoDB Accelerator (DAX) and Amazon Elasticsearch Service (Amazon ES), when
configured as a VPC domain, do not present a public IP address or transit a VPC
endpoint and cannot be controlled with a source IP condition.

Because each condition operator is evaluated with a logical AND, every condition must

evaluate to true for the pp"ystq,@q@igﬁ ‘ﬁﬂ@b@@ﬁ Wme conditions

evaluating to false will permit the action. In that light, the conditions can be viewed as
exceptions to the policy.

* aws:SourFeithE ¢Ed8E Varsist b HHiSdRsdin apftoviitisted

subnets. Customers should replace these IPs with the IPs of their NAT
Gateways, EIPs, and on-premises public IP space.

e aws:SourceVpc — When customers have VPC endpoints implemented, they
Sho“'dﬁ‘ii? }*IT&‘E%’%W& AHH26N o (?l_%}? dtest

e aws:ViaAl Cr|l, Some serwce é%e atlon perform
actions on 2 USSS geﬁaf %y ung t e|r cr r g W|Pno¥\|’oresent customer
IP addresses that they have IR gr ourceIp” condition block. This
condition allows those services to still initiate those actions without being
restricted to the customer network.

e aws:PrincipalTag— Using a standard tag on IAM principals allows customers
to exempt them from this policy if needed. For example, the IAM role used by

aws
22

Amazon Web Services Building an AWS Perimeter

Amazon S3 Same Region or Cross Region Replication operates from an AWS-
owned network and would need to be excluded from this restriction. Customers
should replace the tag key with the tag that they will use to exempt principals.

e aws:PrincipalArn— AWS Elastic Computer Cloud (EC2) uses special
infrastructure IAM roles to perform actions on customers’ behalf per EC2
instance that does not present a predictable public IP address and can be safely

exempted from this policy. The assumed role will look something like this:
arn:aws:sts::123456789012:assumed-role/aws:ec2-

infrastructure/1-07d8bc39180cd7268. The role name uses a “:”

character, which is unallowed for normal roles, so it cannot be spoofed by
another customer.

The following provides an example that can be used in a resource policy to prevent
access by unintended principals.

"Version": "2012-10-17",
"Statement": |
{
"Sid": "PreventUnintendedPrincipals",
"Action": "*",
"Effect": "Deny",
"Principal": "*",
"Resource": [

"k
I
"Condition": {
"StringNotEquals": {
"aws:PrincipalOrgId": "o-4tkekaed53"
}

vuluaniy=dir=dwbs=pericLer/ vunuiy-=diir=dwbs-
This policy is similar to the policy yoperimmietendatanl in a VPC endpoint policy to
prevent unintended principals that do not belong to your organization.

There are expected situations when AWS uses an IAM service principal instead of an
IAM role to interact with your resources. An example would be AWS CloudTrail log

aws
23

Amazon Web Services Building an AWS Perimeter

delivery to Amazon S3. The service principal is not part of your AWS organization like
IAM roles are, so it needs to be excepted from the restriction. You cannot use a
NotPrincipal statement with an AWS service principal, so you can instead use the
aws:PrincipalIsAWSService condition. This provides an example of an S3 bucket
policy for CloudTrail logs that ensures no one outside of your organization can access
the bucket, except for the CloudTrail service principal.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "PreventUnintendedPrincipalsButAllowCloudTrail",
"Action": "*",
"Effect": "Deny",
"Principal™: "*",
"Resource": [
W
]I
"Condition": {
"StringNotEquals": {
"aws:PrincipalOrgId": "o-4tkekaed53"
br
"Bool": {
"aws:PrincipalIsAWSService": "false"

"Sid": "AllowCloudTrailToGetACL",
"Action": "s3:GetBucketAcl",
"Effect": "Allow",
"Principal": {
"Service": |
"cloudtrail.amazonaws.com"
]
bo
"Resource": [
"arn:aws:s3:::bucketname"

"Sid": "AllowCloudTrailToPutLogs",
"Action": "s3:PutObject",

dWs

24

Amazon Web Services Building an AWS Perimeter

"Effect": "Allow",
"Principal”: {
"Service": |

"cloudtrail.amazonaws.com"
]
by

"Resource": [
"arn:aws:s3:::bucketname/AWSLogs/123456789012/*"

1,
"Condition": {
"StringEquals": {
"s3:x-amz-acl": "bucket-owner-full-control"

Preventing Unintended Principals

The following is an example of a VPC Endpoint policy for Amazon DynamoDB that
restricts access to credentials that are part of the customer’'s AWS Organization as a
way to prevent unintended principals.

"Statement": [
{
"Sid": "PreventUnintendedPrincipals",
"Principal": "*",
"Action": [
"dynamodb: *"
I
"Effect": "Allow",
"Resource": "x",
"Condition": ({
"StringEquals": {
"aws:PrincipalOrgId": "o-4tkekae4d53"

aws
25

Amazon Web Services Building an AWS Perimeter

The policy could also be written with two sections in the statement, making the condition
part of an explicit deny. See IAM Policy Evaluation Logic for an explanation of how
these policies are evaluated.

"Statement": [
{
"Sid": "PreventUnintendedPrincipals",
"Principal": "*",
"Action" : "*",
"Effect": "Deny",
"Resource": "x",
"Condition": {

"StringNotEquals": {
"aws:PrincipalOrgId": "o-4tkekaed53"
}

"Sid": "AllowAllDynamoDB",

"Principal": "*",
"Action": "dynamodb:*",
"Effect": "Allow",
"Resource": "*x"

I W Gl tULtLUe Vol JIWi W LY MW ST Il Iy Vil Ge

Preventing Unintended Resource Access

The above Pofis<:7y seaRRTHRS BRIV Sapad PRisstpiements

to additionally depy AEAfRY AHLAFEIPE FRTTEEEFT B AR AR e DynamoDB,
the list of actions that do not suppogfeﬁmg%[hfm[ter than the list of actions that
C

do. To minimize the length of the VPC endpoint policy, the first statement specifies
NotAction against the list of actions that don’t support a resource, which results in
targeting all of the actions that do. The associated resource is anything in the account
123456789012. The second statement only targets the actions that do not support a

aws
26

https://docs.aws.amazon.com/IAM/latest/UserGuide/images/PolicyEvaluationHorizontal.png

Amazon Web Services

resource and can specify the targeted resource as

Building an AWS Perimeter

%

. The set of actions supported by

DynamoDB and other AWS services will change over time. To keep this policy up to
date, you will need to regularly review the AWS documentation that defines the actions
and resources supported by the service, like this for DynamoDB.

"Statement": |

dWs

{

"Sid":
"Principal":
"NotAction":
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:

1,

"Effect":

"dynamodb

"Resource":
"arn:aws:dynamodb:*:123456789012:*"

I

"PreventUnintendedPrincipalsAndResources",

"k
’

[
DescribelLimits",
DescribeReservedCapacity",
DescribeReservedCapacityOfferings",
ListBackups",
ListContributorInsights",
ListExports",
ListGlobalTables",
ListStreams",
ListTables",
:PurchaseReservedCapacityOfferings"

"Allow",

[

"Condition": {
"StringEquals": {

"Sid":
"Principal":

"aws:PrincipalOrgId":

"Action": [

"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:
"dynamodb:

"o-4tkekaed53"

"PreventUnintendedPrincipals",

"ok
14

DescribelLimits",
DescribeReservedCapacity",
DescribeReservedCapacityOfferings",
ListBackups",
ListContributorInsights",
ListExports",

ListGlobalTables",

27

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html

Amazon Web Services Building an AWS Perimeter

"dynamodb:ListStreams",
"dynamodb:ListTables",
"dynamodb: PurchaseReservedCapacityOfferings"
1y
"Effect": "Allow",
"Resource": "x",
"Condition": {
"StringEquals": {
"aws:PrincipalOrgId": "o-4tkekae4d53"

We can also create a similar Amazon S3 endpoint policy using the
s3:ResourceAccount condition. You may also need to exempt certain AWS-owned

Amazon S3 buckets from this policy and explicitly allow access to them. Some services

use their service principal to create S3 pre-signed urls which can be allowed in the
policy using the aws: Principal IsAWSService condition. This includes services like

AWS Elastic Beanstalk that use pre-signed URLSs to access S3 content or AWS

CloudFormation that sends wait condition responses to a pre-signed S3 url from your

VPCs.

"Statement": |

dWs

{

"Sid": "PreventUnintendedPrincipalsAndResources",
"Principal": "*",

"Action" : "*",

"Effect": "Allow",

"Resource": [

LI 1]

]I
"Condition": {
"StringEquals": {
"aws:PrincipalOrgId": "o-4tkekae4d4b3",
"s3:ResourcelAccount": [
"123456789012"

28

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://aws.amazon.com/elasticbeanstalk/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-waitcondition.html

Amazon Web Services Building an AWS Perimeter

"Sid": "AllowAWSServices",
"Principal": "*",

"ACtion" : "*",

"Effect": "Allow",
"Resource": |

LI 1]

1y
"Condition": {
"Bool": {
"aws:PrincipalIsAWSService": "true"

Finally, in some cases, you may need to allow anonymous.s3:GetObject requests
through your S3 VPC endpoints. This is required when you need to support use cases
like web browsing from EC2 instances or Amazon Workspaces where the bucket name
or owner is unknown. This example builds on the previous one to allow this access.

"Statement": [
{
"Sid": "AllowAnonymousGetObject",
"Action": "s3:GetObject",
"Effect": "Allow",
"Resource": [
wxn
]
}I
{
"Sid": "PreventUnintendedPrincipalsAndResources",
"Principal": "*",
"Action": "*",
"Effect": "Allow",
"Resource": [
wxn
]I
"Condition": ({

dWs

"StringEquals": {

29

Amazon Web Services

"aws:PrincipalOrgId":
"s3:ResourcelAccount": [
"123456789012"

"Sid": "AllowAWSServices",
"Principal": "*",
"Action": "*",
"Effect": "Allow",
"Resource": [

W
]I
"Condition": {

"Bool": {

"aws:PrincipalIsAWSService":

The following is an examﬂyof a O|IC
policy document to ensu I?pY

your specified organization.

"Effect": "Deny",
"Principal": {

"AWS": "x"
I
"Action": "sts:AssumeRole",
"Condition": {

"StringNotEquals": {
"aws:PrincipalOrgId":

dWs

Building an AWS Perimeter

"o-4tkekaed53",

"true"

alag Bﬂéou can agdd to ap existing role trust
&!}b% %ﬁ the role are part of

"o-4tkekaed53"

30

Amazon Web Services

If you need to make an exception for a customer in account 123456789012 using an
external id of “12345”, you can add the PrincipalOrgId condition to the statement

where you allow the 1AM principals in your org.

"Version": "2012-10-17",
"Statement": |
{
"Effect": "Allow",
"Principal"™: {

"AWS": [
"arn:aws:iam::094697565664:
"arn:aws:iam::094697565664:
"arn:aws:iam: :094697565664:
"arn:aws:iam::094697565664:
"arn:aws:iam: :094697565664
"arn:aws:iam::094697565664
"arn:aws:iam::094697565664:
"arn:aws:iam::094697565646:
"arn:aws:iam: :087695765465:
"arn:aws:iam: :087695765465:

]

}I

"Action": "sts:AssumeRole",

"Condition": {
"StringEquals": {

"aws:PrincipalOrgId":

"Effect":

"Allow",

"Principal":
"123456789012"

"AWS":
by

"Action":

{

"sts:AssumeRole",

"Condition":

"StringEquals":

{

{

"sts:ExternalId": "12345"

dWs

role/rolel",
role/role2",
role/role3",
role/roled",

:role/roleb",
:role/roleo6",

role/role7",
role/role8",
role/role9",
role/rolel0"

"o-4tkekaed53"

Building an AWS Perimeter

31

Amazon Web Services Building an AWS Perimeter

In this case, the account number for role8 was mistyped and belongs to an account
outside of the specified organization. The PrincipalOrgId condition will prevent
role8 from being able to assume this role while still allowing the external user.

The following configuration is for a Squid-based proxy running in us-east-1 with peers in
us-west-2 and eu-west-1. It denies all other traffic for the amazonaws.com domain, but
allows all other domains to be forwarded normally.

cache effective user squid
prefer direct off
nonhierarchical direct off

Define acls for local networks that are forwarding here

acl rfc 1918 src 10.0.0.0/8 # RFC1918 possible internal
network

acl rfc 1918 src 172.16.0.0/12 # RFC1918 possible internal
network

acl rfc 1918 src 192.168.0.0/16 # RFC1918 possible internal
network

acl localnet src fc00::/7 # RFC 4193 local private network
range

acl localnet src fe80::/10 # RFC 4291 link-local (directly
plugged) machines

acl localnet src 127.0.0.1 # localhost loopback

Additional ACLs

acl ssl ports port 443 ssl
acl safe ports port 80 http
acl safe ports port 21 ftp
acl safe ports port 443 https
acl safe ports port 70 gopher
acl safe ports port 210 wais

acl safe ports port 1025-65535 unregistered ports

H H H H H H = H H

acl safe ports port 280 http-mgmt
acl safe ports port 488 gss—http
acl safe ports port 591 filemaker

aws
32

Amazon Web Services

acl safe ports port 777
acl CONNECT method CONNECT

Building an AWS Perimeter

multiling http

Define acls for amazonaws.com

acl aws domain dstdomain .amazonaws.com

acl us east 1 dstdomain .s3.amazonaws.com

acl us east 1 dstdomain .sts.amazonaws.com

acl us east 1 dstdomain .cloudfront.amazonaws.com

acl us west 2 dstdomain .globalaccelerator.amazonaws.com

acl us east 1 dstdomain .iam.amazonaws.com

acl us east 1 dstdomain .routeb53.amazonaws.com

acl us east 1 dstdomain .gqueue.amazonaws.com

acl us east 1 dstdomain .sdb.amazonaws.com

acl us east 1 dstdomain .waf.amazonaws.com

acl us east 1 dstdomain .us-east-1.amazonaws.com

acl us east 2 dstdomain .us-east-2.amazonaws.com

acl us west 2 dstdomain .us-west-2.amazonaws.com

acl eu west 1 dstdomain .eu-west-1.amazonaws.com

acl us east 1 alt dstdom regex \.us-east-1\..*?\.amazonaws.com
acl us east 2 alt dstdom regex \.us-east-2\..*?\.amazonaws.com
acl us west 2 alt dstdom regex \.us-west-2\..*?\.amazonaws.com
acl eu west 1 alt dstdom regex \.eu-west-1\..*?\.amazonaws.com

Deny access to than SSL
http access deny !safe ports

http access deny CONNECT !ssl ports

anything other

Now specify the cache peer for each Region

never direct allow us east 2

never direct allow us east 2 alt

never direct allow us west 2

never direct allow us west 2 alt

never direct allow eu west 1

never direct allow eu west 1 alt

cache peer us-east-2.proxy.local parent 3128 0 no-query proxy-only
name=cmh

cache peer access cmh allow us east 2

cache peer access cmh allow us east 2 alt

cache peer us-west-2.proxy.local parent 3128 0 no-query proxy-only
name=pdx

cache peer access pdx allow us west 2

cache peer access pdx allow us west 2 alt

cache peer eu-west-l.proxy.local parent 3128 0 no-query proxy-only

name=dub

dWs

33

Amazon Web Services Building an AWS Perimeter

cache peer access dub allow eu west 1
cache peer access dub allow eu west 1 alt

Only allow cachemgr access from localhost
http access allow localhost manager
http access deny manager

Explicitly allow approved AWS Regions so we can block
all other Regions using .amazonaws.com below

http access allow rfc 1918 us east 1

http access allow rfc 1918 us east 2

http access allow rfc 1918 us west 2

http access allow rfc 1918 eu west 1

http access allow rfc 1918 us east 1 alt

http access allow rfc 1918 us east 2 alt

http access allow rfc 1918 us west 2 alt

http access allow rfc 1918 eu west 1 alt

Block all other AWS Regions
http access deny aws domain

Allow all other access from local networks
http access allow rfc 1918
http access allow localnet

Finally deny all other access to the proxy
http access deny all

Listen on 3128
http port 3128

Logging

access log stdio:/var/log/squid/access.log
strip query terms off

logfile rotate 1

Turn off caching
cache deny all

Enable the X-Forwarded-For header
forwarded for on

Suppress sending squid version information
httpd suppress version string on

dWs

34

Amazon Web Services Building an AWS Perimeter

How long to wait when shutting down squid
shutdown lifetime 30 seconds

Hostname
visible hostname aws proxy

Prefer ipv4 over v6
dns v4 first on

Contributors to this document include:

e Michael Haken, Principal Solutions Architect, Amazon Web Services

Date Description

September Content and policy example updates
2021

July 2021 First publication

This version has been archived.

1 hitps:/en.wikipdeorathreitatestiversion of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-
perimeter.html

aws
35

https://en.wikipedia.org/wiki/If_and_only_if

	Introduction
	Perimeter Objectives
	AWS Services
	Objectives Summary

	Perimeter Overview
	Identity Boundary
	Only My Resources
	Only My Networks
	Mobile Devices

	Resource Boundary
	Only My IAM Principals
	Only My Networks

	Network Boundary
	Only My IAM Principals
	Only My Resources
	Amazon S3 Resource Considerations

	Cross-Region Requests

	Preventing Access to Temporary Credentials

	Conclusion
	Appendix 1 – IAM Guardrail Policy Examples
	Appendix 2 – Network Boundary SCP
	Appendix 3 – Resource Policy Example
	Appendix 4 – VPC Endpoint Policy Examples
	Preventing Unintended Principals
	Preventing Unintended Resource Access

	Appendix 5 – IAM Role Trust Policy Example
	Appendix 6 - Example Proxy Configuration
	Contributors
	Document Revisions

