
This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Building an AWS Perimeter
September 8, 2021

https://docs.aws.amazon.com/whitepapers/latest/building-an-aws-perimeter/building-an-aws-perimeter.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Contents

Introduction ... 1

Perimeter Objectives ... 2

AWS Services .. 4

Objectives Summary .. 4

Perimeter Overview ... 5

Identity Boundary ... 5

Resource Boundary ... 9

Network Boundary ... 12

Preventing Access to Temporary Credentials .. 16

Conclusion .. 17

Appendix 1 – IAM Guardrail Policy Examples ... 18

Appendix 2 – Network Boundary SCP... 21

Appendix 3 – Resource Policy Example .. 23

Appendix 4 – VPC Endpoint Policy Examples ... 25

Preventing Unintended Principals .. 25

Preventing Unintended Resource Access .. 26

Appendix 5 – IAM Role Trust Policy Example ... 30

Appendix 6 - Example Proxy Configuration ... 32

Contributors ... 35

Document Revisions ... 35

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Abstract

Many organizations want to create in AWS the same kind of perimeter protections they

use in on-premises environments. This paper outlines the best practices and available

services for creating a perimeter around your identities, resources, and networks in

AWS.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

1

Introduction

In traditional, on-premises data center environments, a trusted network and strong

authentication are the foundation of security. They establish a high-level perimeter to

help prevent untrusted entities from coming in and data from going out. This perimeter

provides a clear boundary of trust and ownership. When customers think about creating

an AWS perimeter as part of their responsibility for security “in the cloud” in the AWS

Shared Responsibility Model, they want to achieve the same outcomes. They want to

draw a circle around their AWS resources, like Amazon Simple Storage Service (S3)

buckets and Amazon Simple Queue Service (SQS) queues, that clearly separates “my

AWS” from other customers.

The circle that defines an AWS perimeter is typically represented as an AWS

organization managed by AWS Organizations. AWS Organizations is an account

management service that lets you consolidate multiple AWS accounts into an

organization that you create and centrally manage.

Each AWS account you own is a logical container for AWS identities, resources, and

networks. The AWS organization is a grouping of all of those items into a single entity.

Along with on-premises networks and systems that access AWS resources, it is what

most customers think of as the perimeter of “my AWS”.

The perimeter defines the things you “intend” or “expect” to happen. It refers to the

access patterns among your identities, resources, and networks that should be allowed.

Using those three elements, we want to make the following assertion to define our

perimeter’s goal: access is allowed if - and only if1 - the identity is intended, the

resource is intended, and the network is expected.

If any of these conditions are false, then the access inside the perimeter is “unintended”

and should be denied. The perimeter is composed of boundaries implemented by your

identities, resources, and networks to ensure the necessary conditions are true.

This paper discusses these boundaries in terms of preventing unintended access

patterns. It is designed to help customers understand how to use them to create a

complete AWS perimeter as part of their responsibility in the AWS Shared

Responsibility Model.

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

2

Figure 1 - AWS perimeter: A high-level depiction of defining a perimeter around your AWS

resources to prevent interaction with unintended AWS Identity and Access Management (IAM)

principals and unintended resources.

Perimeter Objectives

The goal of an AWS perimeter is to ensure access is allowed if and only if an

authorization involves:

1. Only My IAM Principals - The AWS Identity and Access Management (IAM)

principals in my AWS organization or AWS acting on my behalf

2. Only My Resources - The resources in my AWS organization or resources

AWS operates on my behalf

3. Only My Networks - Both my VPC and on-premises networks

These are the necessary and sufficient conditions for intended access inside an AWS

perimeter to be allowed.

https://aws.amazon.com/iam/?nc=sn&loc=0
https://aws.amazon.com/iam/?nc=sn&loc=0

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

3

Access in the Perimeter

⟺ (Only My IAM Principals) ∧ (Only My Resource) ∧ (Only My Network)

Ensuring the truth of these three conditions ultimately defines the objectives of the

perimeter. It also represents three separate boundaries through which we can

implement controls.

There is an Identity Boundary that specifies resource and network controls, a

Resource Boundary that specifies identity and network controls, and a Network

Boundary that specifies identity and resource controls.

Thus, each boundary supports two of the three overall objectives to prevent unintended

access patterns. The following table outlines how each perimeter objective is supported

in each boundary.

Boundary Perimeter Objective Purpose

Identity

Only My Resources

Only My Networks

My IAM principals can only access resources

that are part of “my AWS”

My IAM principals can only access resources

from expected networks

Resource

Only My IAM Principals

Only My Networks

Only IAM principals that are part of “my AWS”

can access my resources

My resources can only be accessed from

expected networks

Network

Only My IAM Principals

Only My Resources

Only IAM principals that are part of “my AWS”

can access resources from my networks

Only resources that are part of “my AWS” can be

accessed from my networks

The next section will outline the AWS services used to implement the perimeter.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

4

AWS Services

There are several services that will be used to create the controls in each boundary to

meet each of the perimeter objectives. We will analyze these services based on how

they support each boundary.

• Identity Boundary – The Identity Boundary is built from two types of policies,

IAM identity-based policies and AWS Organizations Service Control Policies

(SCP). Identity-based policies are applied directly to IAM principals to define their

permissions. SCPs are a type of organization policy that you can use to manage

permissions in your organization and are applied to your identities. SCPs offer

central control over the maximum available permissions for all accounts in your

organization. This control includes the ability to define the expected network

locations for interaction with intended AWS resources.

• Resource Boundary – The Resource Boundary is defined through resource-

based policies. These policies are applied to AWS resources and define which

IAM principals can interact with the resource, as well as what the expected

networks are for access.

• Network Boundary – The Network Boundary is defined through the use of VPC

endpoints and VPC endpoint policies and must include both VPC and on-

premises networks. A VPC endpoint enables a private VPC connection to

supported AWS services without requiring an internet gateway, NAT device, VPN

connection, or AWS Direct Connect connection. Most endpoints also support

applying an endpoint policy. This is an additional IAM policy that is evaluated

against all requests, regardless of whether the IAM principal or resource involved

in the request is part of “my AWS”. It is important because these policies are

evaluated against all IAM principals, where identity-based policies and SCPs only

apply to IAM principals that are part of your organization.

Objectives Summary

In summary, the objectives of the perimeter are to ensure that access involves Only My

IAM Principals, Only My Resources, and Only My Networks. If each boundary

achieves the stated objectives for all principals, resources, and networks, then the

perimeter prevents unintended principals from accessing your resources, prevents your

principals from accessing unintended resources, and finally, prevents data from being

moved outside the perimeter to another AWS resource. This table summarizes the

boundary and objectives mapping to the AWS services used to implement them.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

5

Boundary Perimeter Objective AWS Services Used

Identity

Only My Resources

Only My Networks

Identity-based policies and SCPs

Resource

Only My IAM Principals

Only My Networks

Resource-based policies

Network

Only My IAM Principals

Only My Resources

VPC Endpoint Policies

Perimeter Overview

This section describes the complete perimeter solution by evaluating how each

boundary is implemented using the previously mentioned AWS services. Each

boundary section will describe the overall solution and how it achieves each associated

perimeter objective. They will also provide an appendix reference with detailed

examples and demonstrate how the boundary prevents the unintended access pattern

for each objective.

Identity Boundary

The Identity Boundary consists of policies applied to the IAM principals that are part of

“my AWS” and ensures that they only access intended resources (Only My Resources)

from expected networks (Only My Networks).

Only My Resources

This objective ensures that your intended IAM principals can’t access resources in AWS

accounts outside the perimeter. All access to unintended AWS resources involves

cross-account access (since those resources exist in an AWS account that is not part of

your AWS organization). For requests made from one AWS account to another, the

requester in Account A (an account in “my AWS”) must have an identity-based policy

that allows them to make a request to the resource in Account B (an account outside of

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

6

your perimeter). Also, the resource-based policy in Account B must allow the requester

in Account A to access the resource.

If policies in both accounts don't allow the operation, the request fails. Thus, by

implementing least privilege identity-based policies, focused on reducing standalone

wildcards in Resource statements ("Resource": "*") and explicitly listing allowed

resources when possible, customers can significantly reduce, if not eliminate, the risk of

accessing unintended resources.

In addition to least privilege identity-based policies, SCPs are designed to provide hard

guardrails on what resources your IAM principals can access as a defense in depth

approach to limiting resource access.

SCPs configured as deny lists can limit the scope of access to resources in specific

accounts that are part of your organization by specifying resources like

"arn:aws:ec2:*:123456789012:*" for actions that support specifying resource

types and using the s3:ResourceAccount condition for Amazon S3 resources.

The following diagram demonstrates how this control prevents your identities from

accessing unintended resources.

Figure 2 - Preventing Access to Unintended Resources: Identity-based policies and SCPs

can restrict access to only intended resources.

In order to build SCPs like this, you will need to review which services support resource-

based policies (like Amazon S3) and/or resource sharing (like EC2 Amazon Machine

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_denylist
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

7

Images), review the IAM documentation to identify the actions that support resource

types (vs those that require a wildcard as the resource), and create policies limiting

those actions to resources in your accounts.

You will need to keep these policies up to date as new services, actions, and resources

are added. You may also need to limit these policies to select services and/or accounts

if you have a large number of AWS accounts in your environment in order to stay within

the size and quantity quotas provided by AWS Organizations for SCPs.

In some cases, you may need to interact with resources that are owned by AWS and

are not a part of your AWS organization, typically an Amazon S3 bucket, AWS Systems

Manager Parameter Store parameters, or an Amazon SNS topic. These resources will

need to be explicitly allowed in the policies you create. See Appendix 1 – IAM Guardrail

Policy Example, which provides details of how to create both an identity-based policy

and SCP that restricts access to resources in specific AWS accounts.

Only My Networks

Customers can support this objective with an SCP, which applies to all of their intended

principals and specifies the expected locations for data access. This forces AWS

access through your established Network Boundary controls. See Appendix 2 –

Network Boundary SCP for an example SCP that implements network controls. The

following diagram shows how this control prevents access from unexpected network

locations.

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

8

Figure 3 - Preventing Intended Principals from operating in Unexpected Networks: An

AWS Organizations SCP or identity-based policy can be used to prevent intended principals

from accessing resources from unexpected networks.

There are several scenarios where AWS will act on your behalf with your IAM

credentials from networks that AWS owns that will require exceptions to this control.

For example, AWS CloudFormation provides the ability for customers to define a

template of resources that AWS orchestrates the creation, update, and deletion of those

resources. The initial request to create a CloudFormation stack will originate from an

expected network, but the subsequent requests for each resource in the template are

made by the CloudFormation service in an AWS network.

The aws:ViaAWSService IAM policy condition provides a way to implement an

exception for some of these common scenarios where your IAM credentials are used in

the requests. Appendix 2 – Network Boundary SCP includes details on how to write

such exceptions.

The last consideration in implementing network controls is AWS services that operate in

compute environments that are not part of your network. For example, Lambda

functions or SageMaker Notebooks both provide an option to run on AWS-owned

networks.

Some of these services provide a configuration option for running the service in your

VPC as well. If you want to use the same VPC network boundary for these services,

you should monitor and - where possible, enforce it - using the VPC configuration.

For example, customers can enforce AWS Lambda function deployments and updates

to use Amazon Virtual Private Cloud (Amazon VPC) settings with IAM condition keys,

use AWS Config Rules to audit this configuration, and then implement remediation with

AWS Config Remediation Actions and AWS Systems Manager Automation documents.

It is important to note that not all AWS services are hosted as an AWS-owned endpoint

authorized with IAM (for example, Amazon Relational Database Service databases).

Instead, these services expose their data plane inside a customer VPC.

The data plane is the part of the service that provides the day-to-day functionality of that

thing. For MySQL RDS, it would be the IP address of the RDS instance on port 3306.

Network controls like firewalls or security groups should be used as part of your

Network Boundary to prevent access to AWS services that are hosted in customer

VPCs, but are not authorized with IAM credentials. Additionally, customers should

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-conditions
https://docs.aws.amazon.com/config/latest/developerguide/lambda-inside-vpc.html
https://docs.aws.amazon.com/config/latest/developerguide/remediation.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

9

leverage alternative identity authentication and authorization systems to access those

services, like AWS Secrets Manager for RDS access, when possible.

Mobile Devices

In on-premises networks, there are some resources that are physically static, such as

servers. Other resources like laptops, however, are inherently mobile and can connect

to networks outside of your control.

For example, a laptop could be connected to a corporate network when accessing data,

which is temporarily stored locally, but then joins a public Wi-Fi network and sends the

data to a personal Amazon S3 bucket. This access pattern allows access to unintended

resources and is a use case that customers will need to consider with care.

Customers have generally tried to solve this problem with preventative controls such as

always-on VPNs to keep devices connected to a corporate network. They also use

detective controls (including agents) to monitor traffic and identify when preventative

controls are disabled.

However, these controls aren’t fool-proof. There is still some risk that the device could

join non-corporate networks. Virtual Desktop Infrastructure (VDI) is typically

implemented when the risk of being able to operate a device outside of a controlled

network is unacceptable and the solution requires forcing access to AWS resources

from non-mobile assets.

Amazon WorkSpaces offers a virtual desktop infrastructure (VDI) solution that can be

used to require users, developers, and data scientists to use a static asset to interact

with AWS resources that is subject to the same Network Boundary controls as other

resources in AWS VPCs. VDI solutions can also be operated by customers natively

using Amazon Elastic Compute Cloud (EC2) instances in a VPC.

Resource Boundary

The Resource Boundary consists of resource-based policies applied to the AWS

resources that are part of “my AWS” and ensures that they are only accessed by

intended identities (Only My IAM Principals) from expected networks (Only My

Networks).

Some resources in AWS support resource-based policies (like Amazon S3 Bucket

Policies), meaning that in addition to authorization through identity-based policies, these

resources can define an access policy that is directly associated with the resource.

These are commonly used to provide cross-account access, and can be used to

https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/workspaces

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

10

authorize external AWS credentials or anonymous access. Although resource-based

policies do not allow unintended access by default, a misconfigured policy might

unintentionally grant access to an unintended principal or unexpected network.

To ensure that only intended principals can access your resources from expected

locations, you can implement standardized resource-based policies as a compensating

control against misconfiguration. You might deploy these resources from standardized

templates in AWS Service Catalog that already include the policy, or you might add the

policy to the resource in an event-driven way through Amazon EventBridge when

resources are created or their resource-based polices are updated.

Only My IAM Principals

The standardized control policy should limit access to intended IAM principals by

specifying the aws:PrincipalOrgId IAM policy condition in the resource policy. You

can implement a more granular restriction with the aws:PrincipalAccount or

aws:PrincipalOrgPaths IAM policy conditions as well. To ensure that your resource

policies only allow the intended access, customers can use IAM Access Analyzer for

supported resources to identify resource-based policies that are too permissive.

In certain cases, AWS services may use an IAM principal that is outside of your

organization, specifically a service principal, to perform actions on your behalf. For

example, AWS CloudTrail uses the IAM service principal cloudtrail.amazonaws.com

to deliver logs to your Amazon S3 bucket. These are intended actions, but need to be

explicitly allowed in your resource-based policies. You can do this with the

aws:PrincipalIsAWSService condition.

See Appendix 3 – Resource Policy Example for a template of a standard policy

statement you can add to all resource-based policies to achieve the Only My IAM

Principals objective as well as create necessary exceptions in the Resource Boundary

controls.

The following diagram demonstrates how this control prevents unintended principals

from accessing your resources.

https://aws.amazon.com/servicecatalog/
https://aws.amazon.com/eventbridge/
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

11

Figure 4 - Preventing Unintended Principals: The Amazon S3 bucket policy (a resource-

based policy) only allows intended principals.

Only My Networks

The resource-based policy might also optionally specify what network locations are

expected sources for access by using the aws:SourceIp and aws:SourceVpc (or

aws:SourceVpce) conditions. This control adds defense in depth because the Identity

Boundary and Only My IAM Principals objective in this boundary provide the same

outcome. Only your IAM principals are allowed to access this resource (as defined in

the resource-based policy) and the organization SCP defines the expected networks

your principals are allowed to access the resource from. Those controls have indirectly

also achieved the Only My Networks objective in the Resource Boundary.

The following diagram shows how this control prevents access from unexpected

networks.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

 12

Figure 5 - Preventing Access from Unexpected Networks: The S3 bucket policy (a resource-

based policy) prevents access from unexpected network locations.

Network Boundary

The Network Boundary consists of VPC endpoint policies applied to VPC endpoints in

expected networks (your VPCs) that ensure only intended identities (Only My IAM

Principals) can access intended resources (Only My Resources) from your expected

networks.

This boundary’s purpose is to prevent data from moving to unintended resources

outside the perimeter by unintended IAM principals whom are not subject to your IAM

identity-based policies or SCPs.

VPC endpoint policies provide a mechanism to prevent actions by unintended principals

in both your VPC and on-premises networks. In VPC networks, traffic is routed to VPC

endpoints automatically if you are using AWS provided DNS.

For on-premises networks, you can also route AWS traffic through VPC endpoints if

they are connected to AWS via AWS Direct Connect or VPN. For services that have

PrivateLink interface endpoints, you can route traffic to those endpoints directly from an

on-premises network. When using an Amazon DynamoDB that only provides a gateway

endpoint, you can use a proxy fleet as a way to route traffic from on-premises over that

endpoint. This control ensures that unintended principals can’t move data outside your

network perimeter to other AWS locations.

https://d0.awsstatic.com/aws-answers/Accessing_VPC_Endpoints_from_Remote_Networks.pdf

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

13

Only My IAM Principals

VPC endpoint policies can prevent the use of unintended identities by specifying the

aws:PrincipalOrgId IAM policy condition in your Network Boundary. You can also

implement more granular controls with the aws:PrincipalAccount or

aws:PrincipalOrgPaths conditions. This condition prevents the use of any identity

that is not part of your organization. See Appendix 4 – VPC Endpoint Policy Examples

for best practices on implementing VPC endpoint policies. The following diagram shows

how this control prevents access by unintended principals from expected networks.

Figure 6 - Preventing Unintended Principals from Inside an Expected Network: Unintended

principals are blocked at the VPC endpoint by using a condition statement in the endpoint policy

requiring that the credentials belong to the AWS account hosting the resource or to the AWS

Organization owned by the customer.

Only My Resources

An endpoint policy can also be used to prevent access to unintended resources in a

similar way that identity-based policies or SCPs do. This control also provides a defense

in depth approach because the previous control that only allows intended identities to

operate in your expected networks - combined with the SCP in the Identity Boundary

that implements Only My Resources - indirectly accomplishes the same outcome of

Only My Resources in the Network Boundary. The following diagram shows how this

control prevents your identities from accessing unintended resources.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

14

Figure 7 - Preventing Access to Unintended Resources from an Expected Network:

Unintended resources are blocked at the VPC endpoint through using a resource statement or

condition in the endpoint policy requiring that the resources belong to the AWS account of the

network or belong to the AWS Organization owned by the customer.

Amazon S3 Resource Considerations

Amazon S3 is widely used to store and present publicly available website content and

public data sets. Access to this content is typically performed anonymously, meaning

that the HTTP requests do not have an authorization header or query string parameter

generated from AWS credentials.

Customers may need this anonymous access for users to browse internet websites

from VPC networks or on-premises networks that are routed through VPC endpoints. It

is also used for workloads that may need to access public data (such as package

repositories hosted on Amazon S3 or agent downloads). In order to allow this type of

access, customers may choose to allow anonymous GetObject API calls in their VPC

endpoint policies. This is true whether the Amazon S3 content is being accessed using

the virtual or path style endpoints or is being accessed via an Amazon S3 website

endpoint.

Access to all other Amazon S3 APIs should be authenticated. The Appendix 4 – VPC

Endpoint Policy Examples also includes details of how to allow anonymous GetObject

API calls while enforcing authentication and guardrails for intended resources for the

remainder of Amazon S3 actions.

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

15

Cross-Region Requests

VPC endpoints only support routing AWS API calls to service endpoints that are in the

same Region as the VPC endpoint itself. For example, an Amazon S3 VPC endpoint in

a VPC in us-east-1 only supports routing traffic for requests made to S3 buckets in us-

east-1. A call to PutObject for a bucket in us-west-2 would not traverse the VPC

endpoint and would not have the endpoint policy applied to the request. To ensure the

intended security controls are applied, customers can handle cross-Region requests in

two ways using a proxy.

• Prevent cross-Region API calls. This does not require inspecting TLS and can be

done by looking at the hostname in the CONNECT request or, if using Server

Name Indication (SNI), the hostname presented in the ClientHello, since the

AWS Region is included in the domain name of the URL (with the exception of

some services that only provide a single control plane endpoint such as IAM or

Route53).

• Forward out of Region requests through the proxy. There are two options

available for this solution.

o The local proxy can forward traffic to a peer proxy running in a VPC in the

requested Region. The out-of-Region proxy sends the traffic to the

appropriate VPC endpoint in its Region. See Appendix 6 - Example Proxy

Configuration for an example proxy configuration that implements this proxy-

chaining solution.

o The local proxy uses AWS-provided VPC DNS. An Outbound Amazon

Route 53 Resolver Rule directs all out-of-Region domain names to an

Inbound Route 53 Resolver endpoint in a VPC in the requested Region. This

resolver endpoint is co-located in the same VPC, with the necessary VPC

endpoints. The resolver returns the IP address of the appropriate VPC

endpoint and the local proxy sends the traffic directly to the VPC endpoint in

the requested Region.

The following diagram demonstrates a high-level reference architecture for managing

out of Region requests with proxy-chaining.

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_examples_general.html#example-scp-deny-region
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_examples_general.html#example-scp-deny-region

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

 16

Figure 8 - Using Proxy-Chaining to Send Out-Of-Region Requests through VPC

Endpoints: Workloads send their HTTPS traffic to a proxy in the same Region. That proxy

sends “in-Region” requests to the appropriate VPC endpoint and forwards “out-of-Region”

requests to a peer proxy.

Preventing Access to Temporary Credentials

Except for the cases of credential theft or leakage, the only other way for an unintended

entity to gain access to temporary credentials derived from IAM roles that are part of

“my AWS”, is through misconfigured IAM role trust policies.

IAM role trust policies define the principals that you trust to assume an IAM role. A role

trust policy is a required resource-based policy that is attached to a role in IAM. The

principals that you can specify in the trust policy include users, roles, accounts, and

services.

The trust policy can be configured to ensure that no one from outside the customer’s

account or organization can be authorized to assume the role. Customers should audit

all IAM role trust policies and ensure one of the following are true.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

17

• The trust policy uses either the aws:PrincipalOrgId or

aws:PrincipaOrgPaths condition in an allow statement when the trusted entity

is an IAM principal, such as a role or user. Exceptions can be created with an

allow list of known, external, expected accounts and they should use the

sts:ExternalId condition.

• The trust policy implements a deny statement for all IAM principals when the

aws:PrincipalOrgId condition does not match the intended org.

• The trusted entity is an AWS service, being either a service principal or IAM

service-linked role. A trust policy should not trust more than one AWS service for

least privilege reasons.

See Appendix 5 – IAM Role Trust Policy Example for more details.

Conclusion

This paper has reviewed how VPC endpoints with policies, resource and identity-based

policies, and SCPs are effective tools for creating boundaries as part of a perimeter

around “my AWS”.

The following is a list of the recommendations made throughout this paper as part of

achieving the perimeter’s three objectives.

• Use least privilege IAM identity-based policies and SCPs to prevent intended

principals from accessing unintended resources.

• Use an SCP to limit access to resources from expected network locations.

• Add defense in depth to resources that support resource-based policies by

specifying the aws:PrincipalOrgId condition to limit access to intended

principals and optionally conditions to limit access to expected network locations.

Audit all resource policies to ensure that these coarse-grained controls are

applied to prevent misconfiguration. Use IAM Access Analyzer to review

resource-based policy configuration. Use the aws:PrincipalIsAWSService

condition to create exceptions in resource policies for AWS services.

• Use VPC endpoints and endpoint policies to prevent unintended principals when

interacting with AWS resources from your networks by using

aws:PrincipalOrgId as a condition in each statement. Also, use VPC endpoint

policies to prevent access to unintended resources to provide defense in depth.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

18

• Block all outbound Internet access, except for required AWS endpoints and

allowed external services that are dependencies for your workloads. This

prevents data movement to non-AWS destinations, out-of-Region AWS

endpoints, and unintended VPC hosted data plane services (like RDS instances).

• Use the s3:ResourceAccount condition to limit access to buckets in specific

AWS accounts.

• Where required, implement proxy-based solutions to manage out-of-Region

requests so that Network Boundary controls are consistently applied.

• Where AWS provides an option to run a resource publicly or inside a customer-

owned VPC, use the VPC configuration (that is, Amazon Elasticsearch Service

(Amazon ES), Amazon SageMaker notebooks, and AWS Lambda) and turn off

the public access options (for example, Amazon Redshift and RDS) in order to

use network controls.

• Configure IAM Role Trust Policies with condition statements, limiting access to

only intended principals when the trusted entity is an IAM principal (as opposed

to an AWS service principal).

Appendix 1 – IAM Guardrail Policy Examples

The following provides an example of an IAM identity-based policy that provides access

to Amazon Simple Queue Service (SQS) resources belonging to a specific set of

accounts (could be one or more).

{

 "Version": "2012-10-17",

 "Statement": [

{

"Sid": "SQSLimitCrossAccountAccess",

"Action": [

"sqs:AddPermission",

"sqs:ChangeMessageVisibility",

"sqs:ChangeMessageVisibilityBatch",

"sqs:CreateQueue",

"sqs:DeleteMessage",

"sqs:DeleteMessageBatch",

"sqs:DeleteQueue",

"sqs:GetQueueAttributes",

"sqs:GetQueueUrl",

http://aws.amazon.com/elasticsearch-service
http://aws.amazon.com/elasticsearch-service
https://aws.amazon.com/sagemaker/
http://aws.amazon.com/lambda
http://aws.amazon.com/redshift
https://aws.amazon.com/sqs/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

19

"sqs:ListDeadLetterSourceQueues",

"sqs:ListQueueTags",

"sqs:PurgeQueue",

"sqs:ReceiveMessage",

"sqs:RemovePermissions",

"sqs:SendMessage",

"sqs:SendMessageBatch",

"sqs:SetQueueAttributes",

"sqs:TagQueue",

"sqs:UntagQueue"

],

"Effect": "Allow",

"Resource": [

"arn:aws:sqs:*:123456789012:*",

"arn:aws:sqs:*:987654321098:*"

]

},

{

"Sid": "SQSAllowActionsWithoutAResource",

"Action": [

"sqs:ListQueues"

],

"Effect": "Allow",

"Resource": [

"*"

]

}

]

}

You can use this same pattern for constraining access to just your resources for other

services that support resource-based policies and cross-account access, such as

Amazon Simple Notification Services (SNS), AWS Lambda and Simple Email Service

(Amazon SES). To use this policy as a guardrail SCP, you need to use an allow list

strategy and replace the default FullAWSAccess SCP. Ensure you test the policy for

your use cases and other exceptions that may be required for your environment.

The next identity-based policy limits access to S3 resources in just the specified

accounts.

{

 "Version": "2012-10-17",

 "Statement": [

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://aws.amazon.com/sns/
http://aws.amazon.com/lambda
http://aws.amazon.com/ses
http://aws.amazon.com/ses
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_allowlist
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_allowlist

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

20

{

"Sid": "AllowS3InteractionWithSpecificAccounts",

"Action": "s3:*",

"Effect": "Allow",

"Resource": [

"*"

],

"Condition": {

"StringEquals": {

"s3:ResourceAccount": [

"123456789012",

"987654321098"

]

}

}

}

]

}

Because the preceding policies use a condition for Amazon S3 actions, it can’t be used

as an SCP. To use it as an SCP, the policy can be rewritten as a deny list. For this

example, we assume the default FullAWSAccess policy is in place. Ensure you test the

policy for your use cases and other exceptions that may be required for your

environment.

{

 "Version": "2012-10-17",

 "Statement": [

{

"Sid": "LimitS3InteractionWithSpecificAccounts",

"Action": [

"s3:*"

],

"Effect": "Deny",

"Resource": "*",

"Condition": {

"StringNotEquals": {

"s3:ResourceAccount" : [

"123456789012",

"987654321098"

]

}

}

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_allowlist
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_allowlist
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html#orgs_policies_denylist
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_inheritance_auth.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

21

}

]

}

This same policy can be incorporated into a VPC endpoint policy as shown in Appendix

4 – VPC Endpoint Policy Examples, but may need to allow anonymous s3:GetObject

in certain circumstances which are discussed in the appendix.

Appendix 2 – Network Boundary SCP

This policy can be applied once at the organization root level, in which case, you’ll need

to scale the aws:SourceVpc condition to include VPCs from all of your accounts. You

can also apply this policy in a more granular way at an organizational unit or individual

account level (meaning you would have multiple SCPs of this type deployed). Be sure to

check that your SCPs conform to the quotas provided by AWS Organizations.

{

 "Version": "2012-10-17",

 "Statement": [

{

"Effect": "Deny",

"NotAction": [

"es:ESHttp*",

"dax:PutItem",

"dax:Query",

"dax:Scan",

"dax:GetItem",

"dax:DeleteItem",

"dax:BatchGetItem",

"dax:BatchWriteItem",

"dax:ConditionCheckItem"

],

"Resource": "*",

"Condition": {

"NotIpAddressIfExists": {

"aws:SourceIp": [

"192.0.2.0/24",

"203.0.113.0/24"

]

},

"StringNotEqualsIfExists": {

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

22

"aws:SourceVpc": [

"vpc-012abc01",

"vpc-023edf34"

]

},

"Bool": {

"aws:ViaAWSService": "false"

},

"Null": {

"aws:PrincipalTag/IpRestrictedExempt": true

},

"ArnNotLike": {

"aws:PrincipalArn": "arn:aws:iam::*:role/aws:ec2-

infrastructure"

}

}

}

]

}

This is a summary of the SCP contents. The policy denies all actions to all resources,

except for the actions listed in the NotAction section. They are listed because Amazon

DynamoDB Accelerator (DAX) and Amazon Elasticsearch Service (Amazon ES), when

configured as a VPC domain, do not present a public IP address or transit a VPC

endpoint and cannot be controlled with a source IP condition.

Because each condition operator is evaluated with a logical AND, every condition must

evaluate to true for the policy to deny the action. Thus, any one of the conditions

evaluating to false will permit the action. In that light, the conditions can be viewed as

exceptions to the policy.

• aws:SourceIp – The action is allowed if it originates from one of the listed

subnets. Customers should replace these IPs with the IPs of their NAT
Gateways, EIPs, and on-premises public IP space.

• aws:SourceVpc – When customers have VPC endpoints implemented, they

should replace these values with the VPC IDs of their own VPCs.

• aws:ViaAWSService – Some services, such as CloudFormation, perform

actions on a user’s behalf by using their credentials and will not present customer
IP addresses that they have listed in the “aws:SourceIp” condition block. This

condition allows those services to still initiate those actions without being
restricted to the customer network.

• aws:PrincipalTag – Using a standard tag on IAM principals allows customers

to exempt them from this policy if needed. For example, the IAM role used by

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

23

Amazon S3 Same Region or Cross Region Replication operates from an AWS-
owned network and would need to be excluded from this restriction. Customers
should replace the tag key with the tag that they will use to exempt principals.

• aws:PrincipalArn – AWS Elastic Computer Cloud (EC2) uses special

infrastructure IAM roles to perform actions on customers’ behalf per EC2
instance that does not present a predictable public IP address and can be safely
exempted from this policy. The assumed role will look something like this:
arn:aws:sts::123456789012:assumed-role/aws:ec2-

infrastructure/i-07d8bc39180cd7268. The role name uses a “:”

character, which is unallowed for normal roles, so it cannot be spoofed by
another customer.

Appendix 3 – Resource Policy Example

The following provides an example that can be used in a resource policy to prevent

access by unintended principals.

{

 "Version": "2012-10-17",

 "Statement": [

{

"Sid": "PreventUnintendedPrincipals",

"Action": "*",

"Effect": "Deny",

"Principal": "*",

"Resource": [

"*"

],

"Condition": {

"StringNotEquals": {

"aws:PrincipalOrgId": "o-4tkekae453"

}

}

}

]

}

This policy is similar to the policy you would implement in a VPC endpoint policy to

prevent unintended principals that do not belong to your organization.

There are expected situations when AWS uses an IAM service principal instead of an

IAM role to interact with your resources. An example would be AWS CloudTrail log

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

24

delivery to Amazon S3. The service principal is not part of your AWS organization like

IAM roles are, so it needs to be excepted from the restriction. You cannot use a

NotPrincipal statement with an AWS service principal, so you can instead use the

aws:PrincipalIsAWSService condition. This provides an example of an S3 bucket

policy for CloudTrail logs that ensures no one outside of your organization can access

the bucket, except for the CloudTrail service principal.

{

 "Version": "2012-10-17",

 "Statement": [

{

"Sid": "PreventUnintendedPrincipalsButAllowCloudTrail",

"Action": "*",

"Effect": "Deny",

"Principal": "*",

"Resource": [

"*"

],

"Condition": {

"StringNotEquals": {

"aws:PrincipalOrgId": "o-4tkekae453"

},

"Bool": {

"aws:PrincipalIsAWSService": "false"

}

}

},

{

"Sid": "AllowCloudTrailToGetACL",

"Action": "s3:GetBucketAcl",

"Effect": "Allow",

"Principal": {

"Service": [

"cloudtrail.amazonaws.com"

]

},

"Resource": [

"arn:aws:s3:::bucketname"

]

},

{

"Sid": "AllowCloudTrailToPutLogs",

"Action": "s3:PutObject",

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

25

"Effect": "Allow",

"Principal": {

"Service": [

"cloudtrail.amazonaws.com"

]

},

"Resource": [

"arn:aws:s3:::bucketname/AWSLogs/123456789012/*"

],

"Condition": {

"StringEquals": {

"s3:x-amz-acl": "bucket-owner-full-control"

}

}

}

]

}

Appendix 4 – VPC Endpoint Policy Examples

Preventing Unintended Principals

The following is an example of a VPC Endpoint policy for Amazon DynamoDB that

restricts access to credentials that are part of the customer’s AWS Organization as a

way to prevent unintended principals.

{

 "Statement": [

{

"Sid": "PreventUnintendedPrincipals",

"Principal": "*",

"Action": [

"dynamodb:*"

],

"Effect": "Allow",

"Resource": "*",

"Condition": {

"StringEquals": {

"aws:PrincipalOrgId": "o-4tkekae453"

}

}

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

26

}

]

}

The policy could also be written with two sections in the statement, making the condition

part of an explicit deny. See IAM Policy Evaluation Logic for an explanation of how

these policies are evaluated.

{

 "Statement": [

{

"Sid": "PreventUnintendedPrincipals",

"Principal": "*",

"Action": "*",

"Effect": "Deny",

"Resource": "*",

"Condition": {

"StringNotEquals": {

"aws:PrincipalOrgId": "o-4tkekae453"

}

}

},

{

"Sid": "AllowAllDynamoDB",

"Principal": "*",

"Action": "dynamodb:*",

"Effect": "Allow",

"Resource": "*"

}

]

}

Preventing Unintended Resource Access

The above policies can also be combined with explicit resource and action statements

to additionally deny access to unintended resources. In this example with DynamoDB,

the list of actions that do not support a resource is shorter than the list of actions that

do. To minimize the length of the VPC endpoint policy, the first statement specifies

NotAction against the list of actions that don’t support a resource, which results in

targeting all of the actions that do. The associated resource is anything in the account

123456789012. The second statement only targets the actions that do not support a

https://docs.aws.amazon.com/IAM/latest/UserGuide/images/PolicyEvaluationHorizontal.png

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

27

resource and can specify the targeted resource as “*”. The set of actions supported by

DynamoDB and other AWS services will change over time. To keep this policy up to

date, you will need to regularly review the AWS documentation that defines the actions

and resources supported by the service, like this for DynamoDB.

{

 "Statement": [

{

"Sid": "PreventUnintendedPrincipalsAndResources",

"Principal": "*",

"NotAction": [

"dynamodb:DescribeLimits",

"dynamodb:DescribeReservedCapacity",

"dynamodb:DescribeReservedCapacityOfferings",

"dynamodb:ListBackups",

"dynamodb:ListContributorInsights",

"dynamodb:ListExports",

"dynamodb:ListGlobalTables",

"dynamodb:ListStreams",

"dynamodb:ListTables",

"dynamodb:PurchaseReservedCapacityOfferings"

],

"Effect": "Allow",

"Resource": [

"arn:aws:dynamodb:*:123456789012:*"

],

"Condition": {

"StringEquals": {

"aws:PrincipalOrgId": "o-4tkekae453"

}

}

},

{

"Sid": "PreventUnintendedPrincipals",

"Principal": "*",

"Action": [

"dynamodb:DescribeLimits",

"dynamodb:DescribeReservedCapacity",

"dynamodb:DescribeReservedCapacityOfferings",

"dynamodb:ListBackups",

"dynamodb:ListContributorInsights",

"dynamodb:ListExports",

"dynamodb:ListGlobalTables",

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

28

"dynamodb:ListStreams",

"dynamodb:ListTables",

"dynamodb:PurchaseReservedCapacityOfferings"

],

"Effect": "Allow",

"Resource": "*",

"Condition": {

"StringEquals": {

"aws:PrincipalOrgId": "o-4tkekae453"

 }

}

}

]

}

We can also create a similar Amazon S3 endpoint policy using the

s3:ResourceAccount condition. You may also need to exempt certain AWS-owned

Amazon S3 buckets from this policy and explicitly allow access to them. Some services

use their service principal to create S3 pre-signed urls which can be allowed in the

policy using the aws:PrincipalIsAWSService condition. This includes services like

AWS Elastic Beanstalk that use pre-signed URLs to access S3 content or AWS

CloudFormation that sends wait condition responses to a pre-signed S3 url from your

VPCs.

{

 "Statement": [

{

"Sid": "PreventUnintendedPrincipalsAndResources",

"Principal": "*",

"Action": "*",

"Effect": "Allow",

"Resource": [

"*"

],

"Condition": {

"StringEquals": {

"aws:PrincipalOrgId": "o-4tkekae453",

"s3:ResourceAccount": [

"123456789012"

]

}

}

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://aws.amazon.com/elasticbeanstalk/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-waitcondition.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

29

},

{

"Sid": "AllowAWSServices",

"Principal": "*",

"Action": "*",

"Effect": "Allow",

"Resource": [

"*"

],

"Condition": {

"Bool": {

"aws:PrincipalIsAWSService": "true"

}

}

}

]

}

Finally, in some cases, you may need to allow anonymous s3:GetObject requests

through your S3 VPC endpoints. This is required when you need to support use cases

like web browsing from EC2 instances or Amazon Workspaces where the bucket name

or owner is unknown. This example builds on the previous one to allow this access.

{

 "Statement": [

{

"Sid": "AllowAnonymousGetObject",

"Action": "s3:GetObject",

"Effect": "Allow",

"Resource": [

"*"

]

},

{

"Sid": "PreventUnintendedPrincipalsAndResources",

"Principal": "*",

"Action": "*",

"Effect": "Allow",

"Resource": [

"*"

],

"Condition": {

"StringEquals": {

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

30

"aws:PrincipalOrgId": "o-4tkekae453",

"s3:ResourceAccount": [

"123456789012"

]

}

}

},

{

"Sid": "AllowAWSServices",

"Principal": "*",

"Action": "*",

"Effect": "Allow",

"Resource": [

"*"

],

"Condition": {

"Bool": {

"aws:PrincipalIsAWSService": "true"

}

}

}

]

}

Appendix 5 – IAM Role Trust Policy Example

The following is an example of a policy statement you can add to an existing role trust

policy document to ensure all principals that are allowed to assume the role are part of

your specified organization.

{

 "Effect": "Deny",

 "Principal": {

"AWS": "*"

 },

 "Action": "sts:AssumeRole",

 "Condition": {

"StringNotEquals": {

"aws:PrincipalOrgId": "o-4tkekae453"

}

 }

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

31

}

If you need to make an exception for a customer in account 123456789012 using an

external id of “12345”, you can add the PrincipalOrgId condition to the statement

where you allow the IAM principals in your org.

{

 "Version": "2012-10-17",

 "Statement": [

{

"Effect": "Allow",

"Principal": {

"AWS": [

"arn:aws:iam::094697565664:role/role1",

"arn:aws:iam::094697565664:role/role2",

"arn:aws:iam::094697565664:role/role3",

"arn:aws:iam::094697565664:role/role4",

"arn:aws:iam::094697565664:role/role5",

"arn:aws:iam::094697565664:role/role6",

"arn:aws:iam::094697565664:role/role7",

"arn:aws:iam::094697565646:role/role8",

"arn:aws:iam::087695765465:role/role9",

"arn:aws:iam::087695765465:role/role10"

]

},

"Action": "sts:AssumeRole",

"Condition": {

"StringEquals": {

"aws:PrincipalOrgId": "o-4tkekae453"

}

}

},

{

"Effect": "Allow",

"Principal": {

"AWS": "123456789012"

},

"Action": "sts:AssumeRole",

"Condition": {

"StringEquals": {

"sts:ExternalId": "12345"

}

}

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

32

}

]

}

In this case, the account number for role8 was mistyped and belongs to an account

outside of the specified organization. The PrincipalOrgId condition will prevent

role8 from being able to assume this role while still allowing the external user.

Appendix 6 - Example Proxy Configuration

The following configuration is for a Squid-based proxy running in us-east-1 with peers in

us-west-2 and eu-west-1. It denies all other traffic for the amazonaws.com domain, but

allows all other domains to be forwarded normally.

cache_effective_user squid

prefer_direct off

nonhierarchical_direct off

Define acls for local networks that are forwarding here

acl rfc_1918 src 10.0.0.0/8 # RFC1918 possible internal

network

acl rfc_1918 src 172.16.0.0/12 # RFC1918 possible internal

network

acl rfc_1918 src 192.168.0.0/16 # RFC1918 possible internal

network

acl localnet src fc00::/7 # RFC 4193 local private network

range

acl localnet src fe80::/10 # RFC 4291 link-local (directly

plugged) machines

acl localnet src 127.0.0.1 # localhost loopback

Additional ACLs

acl ssl_ports port 443 # ssl

acl safe_ports port 80 # http

acl safe_ports port 21 # ftp

acl safe_ports port 443 # https

acl safe_ports port 70 # gopher

acl safe_ports port 210 # wais

acl safe_ports port 1025-65535 # unregistered ports

acl safe_ports port 280 # http-mgmt

acl safe_ports port 488 # gss-http

acl safe_ports port 591 # filemaker

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

33

acl safe_ports port 777 # multiling http

acl CONNECT method CONNECT

Define acls for amazonaws.com

acl aws_domain dstdomain .amazonaws.com

acl us_east_1 dstdomain .s3.amazonaws.com

acl us_east_1 dstdomain .sts.amazonaws.com

acl us_east_1 dstdomain .cloudfront.amazonaws.com

acl us_west_2 dstdomain .globalaccelerator.amazonaws.com

acl us_east_1 dstdomain .iam.amazonaws.com

acl us_east_1 dstdomain .route53.amazonaws.com

acl us_east_1 dstdomain .queue.amazonaws.com

acl us_east_1 dstdomain .sdb.amazonaws.com

acl us_east_1 dstdomain .waf.amazonaws.com

acl us_east_1 dstdomain .us-east-1.amazonaws.com

acl us_east_2 dstdomain .us-east-2.amazonaws.com

acl us_west_2 dstdomain .us-west-2.amazonaws.com

acl eu_west_1 dstdomain .eu-west-1.amazonaws.com

acl us_east_1_alt dstdom_regex \.us-east-1\..*?\.amazonaws.com

acl us_east_2_alt dstdom_regex \.us-east-2\..*?\.amazonaws.com

acl us_west_2_alt dstdom_regex \.us-west-2\..*?\.amazonaws.com

acl eu_west_1_alt dstdom_regex \.eu-west-1\..*?\.amazonaws.com

Deny access to anything other than SSL

http_access deny !safe_ports

http_access deny CONNECT !ssl_ports

Now specify the cache peer for each Region

never_direct allow us_east_2

never_direct allow us_east_2_alt

never_direct allow us_west_2

never_direct allow us_west_2_alt

never_direct allow eu_west_1

never_direct allow eu_west_1_alt

cache_peer us-east-2.proxy.local parent 3128 0 no-query proxy-only

name=cmh

cache_peer_access cmh allow us_east_2

cache_peer_access cmh allow us_east_2_alt

cache_peer us-west-2.proxy.local parent 3128 0 no-query proxy-only

name=pdx

cache_peer_access pdx allow us_west_2

cache_peer_access pdx allow us_west_2_alt

cache_peer eu-west-1.proxy.local parent 3128 0 no-query proxy-only

name=dub

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

34

cache_peer_access dub allow eu_west_1

cache_peer_access dub allow eu_west_1_alt

Only allow cachemgr access from localhost

http_access allow localhost manager

http_access deny manager

Explicitly allow approved AWS Regions so we can block

all other Regions using .amazonaws.com below

http_access allow rfc_1918 us_east_1

http_access allow rfc_1918 us_east_2

http_access allow rfc_1918 us_west_2

http_access allow rfc_1918 eu_west_1

http_access allow rfc_1918 us_east_1_alt

http_access allow rfc_1918 us_east_2_alt

http_access allow rfc_1918 us_west_2_alt

http_access allow rfc_1918 eu_west_1_alt

Block all other AWS Regions

http_access deny aws_domain

Allow all other access from local networks

http_access allow rfc_1918

http_access allow localnet

Finally deny all other access to the proxy

http_access deny all

Listen on 3128

http_port 3128

Logging

access_log stdio:/var/log/squid/access.log

strip_query_terms off

logfile_rotate 1

Turn off caching

cache deny all

Enable the X-Forwarded-For header

forwarded_for on

Suppress sending squid version information

httpd_suppress_version_string on

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
building-an-aws-perimeter/building-an-aws-

perimeter.html

Amazon Web Services Building an AWS Perimeter

 35

How long to wait when shutting down squid

shutdown_lifetime 30 seconds

Hostname

visible_hostname aws_proxy

Prefer ipv4 over v6

dns_v4_first on

Contributors

Contributors to this document include:

• Michael Haken, Principal Solutions Architect, Amazon Web Services

Document Revisions

Date Description

September

2021

Content and policy example updates

July 2021 First publication

1 https://en.wikipedia.org/wiki/If_and_only_if

Notes

https://en.wikipedia.org/wiki/If_and_only_if

	Introduction
	Perimeter Objectives
	AWS Services
	Objectives Summary

	Perimeter Overview
	Identity Boundary
	Only My Resources
	Only My Networks
	Mobile Devices

	Resource Boundary
	Only My IAM Principals
	Only My Networks

	Network Boundary
	Only My IAM Principals
	Only My Resources
	Amazon S3 Resource Considerations

	Cross-Region Requests

	Preventing Access to Temporary Credentials

	Conclusion
	Appendix 1 – IAM Guardrail Policy Examples
	Appendix 2 – Network Boundary SCP
	Appendix 3 – Resource Policy Example
	Appendix 4 – VPC Endpoint Policy Examples
	Preventing Unintended Principals
	Preventing Unintended Resource Access

	Appendix 5 – IAM Role Trust Policy Example
	Appendix 6 - Example Proxy Configuration
	Contributors
	Document Revisions

